
Section 4.1 Divisibility and Modular Arithmetic 113

CHAPTER4
Number Theory and Cryptography

SECTION 4.1 Divisibility and Modular Arithmetic
Number theory is playing an increasingly important role in computer science. This section and these exercises
just scratch the surface of what is relevant. Many of these exercises are simply a matter of applying definitions.

It is sometimes hard for a beginning student to remember that in order to prove something about a concept

(such as modular arithmetic), it is usually necessary to invoke the definition! Exercises 34-44 hint at the
rich structure that modular arithmetic has (sometimes resembling real number arithmetic more than integer
arithmetic). In many contexts in mathematics and computer science, modular arithmetic is more relevant and

convenient than ordinary integer arithmetic.

1. a) yes, since 68 = 17 · 4 b) no, remainder= 16

c) yes, since 357 = 17 · 21 d) no, remainder= 15

3. If a I b, then we know that b = at for some integer t. Therefore be = a(tc), so by definition a I be.

5. The given conditions imply that there are integers s and t such that a = bs and b = at. Combining these, we

obtain a = ats; since a =/=- 0, we conclude that st = 1. Now the only way for this to happen is for s = t = 1

or s = t = -1. Therefore either a= b or a= -b.

7. The given condition means that be= (ac)t for some integer t. Since c =/=- 0, we can divide both sides by c to

obtain b = at. This is the definition of a I b, as desired.

9. In each case we need to find (the unique integers) q and r such that a= dq + r and 0:::; r < d, where a and

d are the given integers. In each case q = La/ d J .
a) 19 = 7 · 2 + 5, so q = 2 and r = 5 b) -111 = 11 · (-11) + 10, so q = -11 and r = 10

c) 789=23·34+7,so q=34 and r=7 d) 1001=13·77+0,so q=77 and r=O

e) 0 = 19 · 0 + 0 , so q = 0 and r = 0 f) 3 = 5 · 0 + 3, so q = 0 and r = 3

g) -1 = 3 · (-1) + 2, so q = -1 and r = 2 h) 4 = 1 · 4 + 0, so q = 4 and r = 0

11. We are doing arithmetic modulo 12 for this exercise.

a) Because 11+80 mod 12 = 7, the clock reads 7:00.

b) Because 12 - 40 mod 12 = -28 mod 12 = -28 + 36 mod 12 = 8, the clock reads 8:00.

c) Because 6 + 100 mod 12 = 10, the clock reads 10:00.

13. In each case we merely have to compute the expression on the right mod 13. This means dividing it by 13
and taking the (nonnegative) remainder.

a) 9 · 4 mod 13 = 36 mod 13 = 10 b) 11·9 mod 13 = 99 mod 13 = 8

c) 4 + 9 mod 13 = 13 mod 13 = 0 d) 2 · 4 + 3 · 9 mod 13 = 35 mod 13 = 9

e) 42 + 92 mod 13 = 97 mod 13 = 6

f) 43 - 93 mod 13 = -665 mod 13 = 11 (because -665 = -52 · 13 + 11)

114 Chapter 4 Number Theory and Cryptography

15. The given condition, that a mod m = b mod m, means that a and b have the same remainder when divided

by m. In symbols, a = qi m + r and b = q2m + r for some integers qi , q2, and r. Subtracting these two

equations gives us a - b = (qi - q2)m, which says that m divides (is a factor of) a - b. This is precisely the

definition of a= b (mod m).

17. The quotient n/k lies between two consecutive integers, say b-1 and b, possibly equal to b. In symbols, there

exists a positive integer b such that b - 1 < n/k::; b. In particular, f n/kl = b. Also, since n/k > b- 1, we

have n > k(b-1), and so (since everything is an integer) n-1 2: k(b-1). This means that (n -1)/k 2: b-1,

so L(n-1)/kj 2'.b-1. Ontheotherhand, L(n-1)/kj :S(n-1)/k<n/k:Sb,so L(n-1)/kj <b. Therefore

L(n - l)/kj = b - l. The desired conclusion follows.

19. Let's first look at an example or two. If m = 7, then the usual set of values we use for the congruence classes

modulo m is { 0, 1, 2, 3, 4, 5, 6}. However, we can replace 6 by -1, 5 by -2, and 4 by -3 to get the collection

{ -3, -2, -1, 0, 1, 2, 3}. These will be the values with smallest absolute values. Similarly, if m = 8, then the

collection we want is {-3, -2, -1, 0, 1, 2, 3, 4} ({-4, -3. -2, -1,0, 1,2,3} would do just as well). In general,

in place of {O, 1, 2, ... , m - 1} we can use {I -m/21, f -m/21 + 1, ... , -1, 0, 1, 2, ... , I m/21}, omitting either

f -m/21 or I m/21 if m is even. Note that the values in {O, 1, 2, ... , m - 1} greater than I m/21 have had m

subtracted from them to produce the negative values in our answer. As for a formula to produce these values,

we can use a two-part formula:

f(x) = { x mod m if x mod m::; lm/21
(x mod m) - m if x mod m > f m/2l

Note that if m is even, then we can, alternatively, take f(m/2) = -m/2.

21. For these problems, we need to perform the division (as in Exercise 9) and report the remainder.

a) 13 = 3 · 4 + 1, so 13 mod 3 = 1 b) -97 = 11 · (-9) + 2, so -97 mod 11 = 2

c) 155=19·8+3,so 155mod19=3 d) -221=23·(-10)+9,so -221mod23=9

23. Recall that a div m and a mod m are the integer quotient and remainder when a is divided by m.

a) Because 228 = 1 · 119 + 109, we have 228 div 119 = 1 and 228 mod 119 = 109.

b) Because 9009 = 40 · 223 + 89, we have 9009 div 223 = 40 and 9009 mod 223 = 89.

c) Because -10101 = -31 · 333 + 222, we have -10101 div 333 = -31 and -10101 mod 333 = 222. (Note

that 10101 -;- 333 is 30 ~~~, so without the negative dividend we would get a different absolute quotient and

different remainder. But we have to round the negative quotient here, -30 ~~~ , down to -31 in order for the

remainder to be nonnegative.)

d) Because - 765432 = - 21 · 38271 + 38259, we have - 765432 div 38271 = - 21 and - 765432 mod 38271 =

38259.

25. a) Because -15 already satisfies the inequality, the answer is -15.

b) Because 24 is too large to satisfy the inequality, we subtract 31 and obtain the answer is - 7.

c) Because 99 is too smaU to satisfy the inequality, we add 41 and obtain the answer is 140.

27. We just need to start at -1 and repeatedly subtract or add 25 until we exceed the desired range. Thus the

negative values we seek are -1, -26, -51, and -76, and the positive values are 24, 49, 74, and 99.

29. For these problems, we need to divide by 17 and see whether the remainder equals 5. Remember that the

quotient can be negative, but the remainder r must satisfy 0 ::; r < 17.

a) 80 = 17 · 4 + 12 , so 80 "I- 5 (mod 17) b) 103 = 17 · 6 + 1, so 103 "I- 5 (mod 17)

c) -29 = 17 · (-2) + 5, so -29 = 5 (mod 17) d) -122 = 17·(-8)+14, so -122-=/=- 5 (mod 17)

Section 4.1 Divisibility and Modular Arithmetic 115

31.

a) Working modulo 23, we have -133 + 261 = 128 = 13, so the answer is 13.

b) Working modulo 23, we have 457 · 182 = 20 · 21 = 420 = 6.

33. a) (992 mod 32) 3 mod 15 = (32 mod 32) 3 mod 15 = 93 mod 15 = 729 mod 15 = 9

b) (34 mod 17)2 mod 11 = (81 mod 17)2 mod 11 = 132 mod 11 = 22 mod 11 = 4

c) (193 mod 23)2 mod 31 = ((-4)3 mod 23)2 mod 31 = (-64 mod 23)2 mod 31 = 52 mod 31 = 25

d) (893 mod 79)4 mod 26 = (103 mod 79)4 mod 26 = (1000 mod 79)4 mod 26 = 524 mod 26

04 mod 26 = 0

35. The hypothesis a= b (mod m) means that m l(a - b). Since we are given that n Im, Theorem l(iii) implies

that n l(a - b). Therefore a= b (mod n), as desired.

37. a) To show that this conditional statement does not necessarily hold, we need to find an example in which

ac =be (mod m), but a¢. b (mod m). Let m = 4 and c = 2 (what is important in constructing this example

is that m and c have a nontrivial common factor). Let a = 0 and b = 2 . Then ac = 0 and be = 4, so

ac =be (mod 4), but 0 ¢. 2 (mod 4).

b) To show that this conditional statement does not necessarily hold, we need to find an example in which

a= b (mod m) and c = d (mod m), but ac ¢. bd (mod m). If we try a few randomly chosen positive integers,

we will soon find one. Let m = 5, a= 3, b = 3, c = 1, and d = 6. Then ac = 3 and bd = 729 = 4 (mod 5),

so 31 ¢. 36 (mod 5), even though 3 = 3 (mod 5) and 1 = 6 (mod 5).

39. By Exercise 38 the sum of two squares must be either 0 + 0, 0 + 1, or 1 + 1, modulo 4. Therefore the sum

cannot be 3 modulo 4, which means that it cannot be of the form 4k + 3.

41. There are at least two ways to prove this. One way is to invoke Theorem 5 repeatedly. Since a= b (mod m),

Theorem 5 implies that a· a = b · b (mod m), i.e., a 2 = b2 (mod m). Invoking Theorem 5 again, since

a= b (mod m) and a 2 = b2 (mod m), we obtain a3 = b3 (mod m). After k - 1 applications of this process,

we obtain ak = bk (mod m), as desired. (This is really a proof by mathematical induction, a topic to be

considered formally in Chapter 5.)

Alternately, we can argue directly, using the algebraic identity ak-bk = (a-b)(ak-l +ak-2b+· · ·+abk-2 +

bk-l). Specifically, the hypothesis that a= b (mod m) means that m l(a - b). Therefore by Theorem l(ii),

m divides the right-hand side of this identity, so m l(ak - bk). This means precisely that ak =bk (mod m).

43. The closure property states that a ·m b E Zm whenever a, b E Zm. Recall that Zm = {O, 1, 2, ... , m - 1}

and that a ·m b is defined to be (a · b) mod m. But this last expression will by definition be an integer in

the desired range. To see that multiplication is associative, we must show that (a ·m b) ·m c =a ·m (b ·m c).

This is equivalent to

((a· b mod m) · c) mod m =(a· (b · c mod m)) mod m.

This is true, because both sides equal (a· b · c) mod m (multiplication of integers is associative). Similarly,

multiplication in Zm is commutative because multiplication in Z is commutative, and 1 is the multiplicative

identity for Zm because 1 is the multiplicative identity for Z.

45. We will use + and · for these operations to save space and improve the appearance of the table. Notice

that we really can get by with a little more than half of this table if we observe that these operations are

commutative; then we would need to list a + b and a · b only for a ::;: b.

116 Chapter 4 Number Theory and Cryptography

0+0=0 0+1=1 0+2=2 0+3=3 0+4=4

1+0=1 1+1=2 1+2=3 1+3=4 1+4=0

2+0=2 2+1=3 2+2=4 2+3=0 2+4=1

3+0=3 3+1=4 3+2=0 3+3=1 3+4=2

4+0=4 4+1=0 4+2=1 4+3=2 4+4=3

0 ·O = 0 0·1=0 0. 2 = 0 O· 3 = 0 0. 4 = 0

1·0 = 0 1·1=1 1·2 = 2 1·3 = 3 1·4 = 4

2. 0 = 0 2 · 1=2 2. 2 = 4 2. 3 = 1 2. 4 = 3

3 ·O = 0 3·1=3 3. 2 = 1 3. 3 = 4 3. 4 = 2

4. 0 = 0 4·1=4 4. 2 = 3 4. 3 = 2 4. 4 = 1

47. If d = 1, then f(a) =a and g(a) = 0. Therefore f is clearly one-to-one and onto, and g is neither. If

d > 1, then f is still onto, because f (db) = b for any desired b E Z, but it is clearly not one-to-one, because

f (0) = f (1) = 0. Furthermore, g is clearly not onto, because its range is just {O, 1, 2, ... , d - 1}, and it is not

one-to-one because g(O) = g(d) = 0.

SECTION 4.2 Integer Representations and Algorithms

In addition to having some routine calculation exercises, this exercise set introduces other forms of representing

integers. These are balanced ternary expansion, Cantor expansion, binary coded decimal (or BCD)

representation, and one's and two's complement representations. Each has practical and/or theoretical

importance in mathematics or computer science. If all else fails, one can carry out an algorithm by "playing

computer" and mechanically fallowing the pseudocode step by step.

1. We divide repeatedly by 2, noting the remainders. The remainders are then arranged from right to left to

obtain the binary representation of the given number.

a) We begin by dividing 231 by 2, obtaining a quotient of 115 and a remainder of 1. Therefore a0 = 1. Next

115/2 = 57, remainder 1. Therefore a 1 = 1. Similarly 57 /2 = 28, remainder 1. Therefore a 2 = 1. Then

28/2 = 14, remainder 0, so a3 = 0. Similarly a4 = 0, after we divide 14 by 2, obtaining 7 with remainder 0.

Three more divisions yield quotients of 3, 1, and 0, with remainders of 1, 1, and 1, respectively, so a 5 = a6 =

a7 = 1. Putting all this together, we see that the binary representation is (a7a6a5a4a3a2a1a0)2 = (1110 0111)2.

As a check we can compute that 2° + 21 + 22 + 25 + 26 + 27 = 231.

b) Following the same procedure as in part (a), we obtain successive remainders 0, 0, 1, 0, 1, 1, 0, 1, 1,

0, 0, 0, 1. Therefore 4532 = (1 0001 1011 0100)2.

c) By the same method we obtain 97644 = (1 0111 1101 0110 1100)2.

3. a) (1 1111)2 = 24 + 23 + 22 + 21 + 2° = 16 + 8 + 4 + 2 + 1 = 31. An easier way to get the answer is to note

that (1 1111) 2 = (10 0000)2 - 1 = 25 - 1 = 31.

b) (10 0000 0001)2 = 29 + 2° = 513

c) (1 0101 0101)2 = 28 + 26 + 24 + 22 + 2° = 256 + 64 + 16 + 4 + 1 = 341

d) (110 1001 0001 0000)2 = 214 + 213 + 211 + 28 + 24 = 16384 + 8192 + 2048 + 256 + 16 = 26896

Section 4.2 Integer Representations and Algorithms 117

5. In each case we follow the idea given in Example 7, converting each octal digit to its binary equivalent

(including leading O's where necessary). Note that by convention we then group the binary digits into groups
of fours, starting at the right.

a) Since (5)8 = (101)2, (7)8 = (lll)z, and (2)8 = (010)2, we have (572)8 = (1 0111 1010)2.

b) We concatenate 1, 110, 000, and 100 to obtain (11 1000 0100)2.

c) (1 0001 0011)2 d) (101 0000 1111)2

7. Following Example 7, we simply write the binary equivalents of each digit: (A)16 = (1010)2, (B)16 = (1011)2,

(C)16 = (1100)2, (D)16 = (1101)2, (E)16 = (1110)2, and (F) 16 = (1111)2. Note that the blocking by groups

of four binary digits is just for readability by humans.

a) (80E)16 = (1000 0000 1110)2

b) (135AB)16 = (0001 0011 0101 1010 1011)2

c) (ABBA) 16 = (1010 1011 1011 1010)2

d) (DEFACED) 16 = (1101 1110 1111 1010 1100 1110 1101)2

9. Following Example 7, we simply write the binary equivalents of each digit. Since (A) 16 = (1010)2, (B) 16 =

(1011)2, (C)16 = (1100)2, (D)16 = (1101)2, (E)16 = (1110)2, and (F)15 = (1111)2, we see that (ABCDEF) 16
= (101010111100110111101111)2. Following the convention shown in Exercise 3 of grouping binary digits by

fours, we can write this in a more readable form as 1010 1011 1100 1101 1110 1111.

11. Following Example 7, we simply write the hexadecimal equivalents of each group of four binary digits. Thus
we have (1011 0111 1011)2 = (B7B)16.

13. We adopt a notation that will help with the explanation. Adding up to three leading O's if necessary, write

the binary expansion as (... b23b22b21b20b13b12bnb10bo3bo2bo1booh. The value of this numeral is boo+ 2bo1 +

4b02 + 8b03 + 24 b10 + 25bn + 26 b12 + 27 b13 + 28 b20 + 29 b21 + 210b22 + 2nb23 + · · ·, which we can rewrite as

boo+ 2bo1+4bo2 + 8bo3 + (b10 + 2b11+4b12 + 8b13) · 24 + (b20 + 2b21+4b22 + 8b23) · 28 + · · ·. Now (b,3b,2b,1b,oh
translates into the hexadecimal digit h, . So our number is ho+ h1 · 24 + h2 · 28 + · · · = ho + h 1 · 16 + h2 · 162 + · · · ,
which is the hexadecimal expansion (... h1h1ho)l6.

15. We adopt a notation that will help with the explanation. Adding up to two leading O's if necessary, write

the binary expansion as (... b22b21b20b12b11b10bo2bo1booh. The value of this numeral is b00 + 2bo1 + 4bo2 +

23b10 + 24 bn + 25 b12 + 26 b20 + 27 b21 + 28 b22 + · · ·, which we can rewrite as boo+ 2bo1 + 4bo2 + (b10 + 2bn +

4b12) · 23 + (b20 + 2b21 + 4b22) · 26 + · · ·. Now (b,2biib,o)z translates into the octal digit h,. So our number is

ho+ h1 · 23 + h2 · 26 + · · · = ho+ h1 · 8 + h2 · 82 + · · ·, which is the octal expansion (... h1h1h0) 8 .

17. In each case we follow the method of Example 7, blocking by threes instead of fours. We replace each octal
digit of the given numeral by its 3-digit binary equivalent and string the digits together. The first digit is
(7)s = (111)2, the next is (3)s = (011)2, and so on, so we obtain (1 1101 1100 1010 1101 0001)2. For the

other direction, we split the given binary numeral into blocks of three digits, adding initial O's to fill it out:

001 010 111 011. Then we replace each block by its octal equivalent, obtaining the answer (1273)8 .

19. Since we have procedures for converting both octal and hexadecimal to and from binary (Example 7), to

convert from octal to hexadecimal, we first convert from octal to binary and then convert from binary to

hexadecimal.

21. We can just add and multiply using the grade-school algorithms, working with these very simple addition and

multiplication tables: 0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 10, which means that we "carry" the 1 into the

118 Chapter 4 Number Theory and Cryptography

next column; 0 · 0 = 0 · 1 = 1 · 0 = 0, 1 · 1 = 1. See Examples 8 and 10. Note that we can check our work

by converting everything to decimal numerals (the check is shown in parentheses below). For convenience, we

leave off the ''2" subscripts throughout.

a) 100 0111+1110111=1011 1110 (decimal: 71+119 = 190)

100 0111·1110111=10 0001 0000 0001 (decimal: 71·119 = 8449)

b) 11101111+10111101=110101100 (decimal: 239+189=428)
1110llll·10111101=101100000111 0011 (decimal: 239·189 = 45,171)

c) 10 10101010+111110000=100 1001 1010 (decimal: 682 + 496 = 1178)

10 1010 1010 · 1 11110000=10100101001 0110 0000 (decimal: 682 · 496 = 338,272)

d) 10 0000 0001+11 1111 1111=110 0000 0000 (decimal: 513 + 1023 = 1536)
10 0000 0001·1111111111=1000 0000 000111111111 (decimal: 513 · 1023 = 524,799)

23. We can just add and multiply using the grade-school algorithms (working column by column starting at the

right), using the addition and multiplication tables in base eight (for example, 5 + 6 = 13 and 5 · 6 = 36).

When a digit-by-digit answer is too large to fit (i.e., greater than 7). we '"carry" into the next column. Note
that we can check our work by converting everything to decimal numerals (the check is shown in parentheses

below). For convenience. we leave off the "8'' subscripts throughout.

a) 763 + 147 = 1132 (decimal: 499 + 103 = 602)

763 · 147 = 144,305 (decimal: 499 · 103 = 51,397)

b) 6001 + 272 = 6273 (decimal: 3073 + 186 = 3259)
6001 · 272 = 2,134,272 (decimal: 3073 · 186 = 571,578)

c) 1111+777 = 2110 (decimal: 585 + 511=1096)

1111·777 = 1,107,667 (decimal: 585 · 511=298,935)

d) 54321+3456 = 57,777 (decimal: 22,737 + 1838 = 24,575)
54321 · 3456 = 237,326.216 (decimal: 22,737 · 1838 = 41,790,606)

25. In effect, this algorithm computes 7 mod 645, 72 mod 645, 74 mod 645, 78 mod 645, 716 mod 645,

... , and then multiplies (modulo 645) the required values. Since 644 = (1010000100)2, we need to multiply

together 74 mod 645, 7128 mod 645, and 7512 mod 645, reducing modulo 645 at each step. We compute by
repeatedly squaring: 72 mod 645 = 49, 74 mod 645 = 492 mod 645 = 2401 mod 645 = 466, 78 mod 645 =
4662 mod 645 = 217156 mod 645 = 436, 716 mod 645 = 4362 mod 645 = 190096 mod 645 = 466. At this

point we see a pattern with period 2, so we have 732 mod 645 = 436, 764 mod 645 = 466, 7128 mod 645 =

436, 7256 mod 645 = 466, and 7512 mod 645 = 436. Thus our final answer will be the product of 466, 436,

and 436, reduced modulo 645. We compute these one at a time: 466 · 436 mod 645 = 203176 mod 645 = 1,
and 1 · 436 mod 645 = 436. So 7644 mod 645 = 436. A computer algebra system will verify this; use the

command "7 &- 644 mod 645;" in Maple, for example. The ampersand here tells Maple to use modular

exponentiation, rather than first computing the integer 7644 , which has over 500 digits, although it could

certainly handle this if asked. The point is that modular exponentiation is much faster and avoids having to

deal with such large numbers.

27. In effect, this algorithm computes 3 mod 99, 32 mod 99, 34 mod 99, 38 mod 99, 316 mod 99, ... ,

and then multiplies (modulo 99) the required values. Since 2003 = (11111010011)2, we need to multiply

together 3 mod 99, 32 mod 99, 316 mod 99, 364 mod 99, 3128 mod 99, 3256 mod 99, 3512 mod 99,

and 31024 mod 99, reducing modulo 99 at each step. We compute by repeatedly squaring: 32 mod 99 = 9,

34 mod 99 = 81, 38 mod 99 = 812 mod 99 = 6561 mod 99 = 27, 316 mod 99 = 272 mod 99 =

729 mod 99 = 36, 332 mod 99 = 362 mod 99 = 1296 mod 99 = 9, and then the pattern repeats, so

364 mod 99 = 81, 3128 mod 99 = 27, 3256 mod 99 = 36, 3512 mod 99 = 9, and 31024 mod 99 = 81. Thus

Section 4.2 Integer Representations and Algorithms 119

our final answer will be the product of 3, 9, 36, 81, 27, 36, 9, and 81. We compute these one at a time

modulo 99: 3 · 9 is 27, 27 · 36 is 81, 81 · 81 is 27, 27 · 27 is 36, 36 · 36 is 9, 9 · 9 is 81, and finally 81 · 81 is

27. So 32003 mod 99 = 27.

29. The binary expansion of an integer represents the integer as a sum of distinct powers of 2. For example,
since 21 = (1 0101)2, we have 21 = 24 + 22 + 2°. Since binary expansions are unique, each integer can be so
represented uniquely.

31. Let the decimal expansion of the integer a be given by a = (an-lan- 2 ... a 1a0)i0 . Thus a = 10n-1an-l +
10n-2an-2 + · · · + l0a1 + ao. Since 10 = 1 (mod 3), we have a = an-I + an-2 + · · · + ai + ao (mod 3).
Therefore a= 0 (mod 3) if and only if the sum of the digits is congruent to 0 (mod 3). Since being divisible

by 3 is the same as being congruent to 0 (mod 3), we have proved that a positive integer is divisible by 3 if

and only if the sum of its decimal digits is divisible by 3.

33. Let the binary expansion of the positive integer a be given by a = (an_ 1an_2 ... a 1a0)2. Thus a = a0 +
2a1 + 22 a2 + · · · + 2n-1an-l. Since 22 = 1 (mod 3), we see that 2k = 1 (mod 3) when k is even, and

2k = 2 = -1 (mod 3) when k is odd. Therefore we have a= a0 - a1 + a2 - a3 +···±an-I (mod 3). Thus

a = 0 (mod 3) if and only if the sum of the binary digits in the even-numbered positions minus the sum of

the binary digits in the odd-numbered positions is congruent to 0 modulo 3. Since being divisible by 3 is the

same as being congruent to 0 (mod 3), our proof is complete.

35. a) Since the leading bit is a 1, this represents a negative number. The binary expansion of the absolute value

of this number is the complement of the rest of the expansion, namely the complement of 1001, or 0110.

Since (0110)2 = 6, the answer is -6.

b) Since the leading bit is a 0, this represents a positive number, namely the number whose binary expansion

is the rest of this string, 1101. Since (1101)2=13, the answer is 13.

c) The answer is the negative of the complement of 0001, namely -(1110)2 = -14.

d) -(0000)2 = O; note that 0 has two different representations, 0000 and 1111

37. We must assume that the sum actually represents a number in the appropriate range. Assume that n bits
are being used, so that numbers strictly between -2n-l and 2n-l can be represented. The answer is almost,

but not quite, that to obtain the one's complement representation of the sum of two numbers, we simply add

the two strings representing these numbers using Algorithm 3. Instead, after performing this operation, there

may be a carry out of the left-most column; in such a case, we then add 1 more to the answer. For example,

suppose that n = 4; then numbers from -7 to 7 can be represented. To add -5 and 3, we add 1010 and

0011, obtaining 1101; there was no carry out of the left-most column. Since 1101 is the one's complement

representation of -2, we have the correct answer. On the other hand, to add -4 and -3, we add 1011

and 1100, obtaining 1 0111. The 1 that was carried out of the left-most column is instead added to 0111,

yielding 1000, which is the one's complement representation of - 7. A proof that this method works entails

considering the various cases determined by the signs and magnitudes of the addends.

39. If m is positive (or 0), then the leading bit (an-I) is 0, so the formula reads simply m = 2=~:0
2 a,2', which

is clearly correct, since this is the binary expansion of m. (See Section 2.4 for the meaning of summation

notation. This symbolism is a shorthand way of writing a0 + 2a1 + 4a2 + · · · + 2n-2an_ 2 .) Now suppose that

m is negative. The one's complement expansion for m has its leading bit equal to 1. By the definition of one's

complement, we can think of obtaining the remaining n - 1 bits by subtracting -m, written in binary, from

111 ... 1 (with n - 1 1 's), since subtracting a bit from 1 is the same thing as complementing it. Equivalently,
if we view the bit string (an-2an-l ... a0) as a binary number, then it represents (2n-l - 1) - (-m). In

120 Chapter 4 Number Theory and Cryptography

symbols, this says that (2n-l - 1) - (-m) = '2:~:0
2 ai2'. Solving for m gives us the equation we are trying

to prove (since an-1 = 1) .

41. Following the definition, if the first bit is a 0, then we just evaluate the binary expansion. If the first bit is a 1,

then we find what number x is represented by the remaining four bits in binary; the answer is then -(24 -x).

a) Since the first bit is a 1. and the remaining bits represent the number 9, this string represents the number
-(24 - 9) = -7.

b) Since the first bit is a 0 and this is just the binary expansion of 13, the answer is 13.

c) Since the first bit is a 1. and the remaining bits represent the number 1, this string represents the number

-(24 -1) = -15.

d) Since the first bit is a 1, and the remaining bits represent the number 15, this string represents the number

-(24 -15) = -1. Note that 10000 would represent -(24 - 0) = -16, so in fact we can represent one extra

negative number than positive number with this notation.

43. The nice thing about two's complement arithmetic is that we can just work as if it were all in base 2, since

-x (where x is positive) is represented by 2" - x; in other words, modulo 2", negative numbers represent

themselves. However, if overflow occurs, then we must recognize an error. Let us look at some examples,

where n = 5 (i.e., we use five bits to represent numbers between -15 and 15). To add 5 + 7, we write

00101 + 00111 = 01100 in base 2, which gives us the correct answer, 12. However, if we try to add 13 + 7

we obtain 01101+00111 = 10100, which represents -12, rather than 20, so we report an overflow error. (Of

course these two numbers are congruent modulo 32.) Similarly, for 5 + (-7), we write 00101+11001=11110

in base 2, and 11110 is the two's complement representation of -2, the right answer. For (-5) + (-7), we

write 11011+11001=110100 in base 2; if we ignore the extra 1 in the left-most column (which doesn't exist),

then this is the two's complement representation of -12, again the right answer. To summarize, to obtain

the two's complement representation of the sum of two integers given in two's complement representation,

add them as if they were binary integers, and ignore any carry out of the left-most column. However, if the

left-most digits of the two addends agree and the left-most digit of the answer is different from their common

value, then an overflow has occurred, and the answer is not valid.

45. If m is positive (or 0), then the leading bit (an-l) is 0, so the formula reads simply m = 2=~:02 ai2i, which

is clearly correct, since this is the binary expansion of m. (See Section 2.4 for the meaning of summation

notation. This symbolism is a shorthand way of writing a0 + 2a1 + 4a2 + · · · + 2n-2an_ 2 .) Now suppose that

m is negative. The two's complement expansion for m has its leading bit equal to 1. By the definition of

two's complement, the remaining n - 1 bits are the binary expansion of 2n-l - (-m). In symbols, this says

that 2n-l - (-m) = 2=~:02 a, 2' . Solving for m gives us the equation we are trying to prove (since an-l = 1).

47. Clearly we need 4n digits, four for each digit of the decimal representation.

49. To find the Cantor expansion, we will work from left to right. Thus the first step will be to find the largest

number n whose factorial is still less than or equal to the given positive integer x. Then we determine the

digits in the expansion, starting with an and ending with a 1 .

Section 4.2 Integer Representations and Algorithms

procedure Cantor(x: positive integer)
n := 1; factorial := 1
while (n + 1) ·factorial ::::; x

n := n + 1
factorial := factorial · n

{at this point we know that there are n digits in the expansion}
y := x {this is just so we do not destroy the original input}
while n > 0

an:= LY/factorialJ
y := y - an . factorial
factorial := factorial/n
n := n -1

{we are done: x = ann! + an-i(n -1)! + · · · + a22! +ail!}

121

51. Note that n = 5. Initially the carry is c = 0, and we start the for loop with j = 0. Since a0 = 1 and b0 = 0,

we set d to be L(l + 0 + 0)/2J = O; then so= 1+0 + 0- 2 · 0, which equals 1, and finally c = 0. At the end

of the first pass, then, the right-most digit of the answer has been determined (it's a 1), and there is a carry

of 0 into the next column.

Now j = 1, and we compute d to be L(ai +bi+ c)/2J = L(l + 1+0)/2J = l; whereupon si becomes
1 + 1 + 0 - 2 · 1 = 0, and c is set to 1. Thus far we have determined that the last two bits of the answer are

01 (from left to right), and there is a carry of 1 into the next column.

The next three passes through the loop are similar. As a result of the pass when j = 2 we set d = 1,

s2 = 0, and then c = 1. When j = 3, we obtain d = 1, s3 = 0, and then c = 1. Finally, when j = 4, we
obtain d = 1, S4 = 1, and then c = 1. At this point the loop is terminated, and when we execute the final

step, s5 = 1. Thus the answer is 11 0001.

53. We will assume that the answer is not negative, since otherwise we would need something like the one's
complement representation. The algorithm is similar to the algorithm for addition, except that we need to

borrow instead of carry. Rather than trying to incorporate the two cases (borrow or no borrow) into one, as

was done in the algorithm for addition, we will use an if. .. then statement to treat the cases separately. The

notation is the usual one: a= (an-i ... aiao)z and b = (bn-i ... bibo)z

procedure subtract(a, b: nonnegative integers)
borrow:= 0
for j := 0 to n - 1

if a1 - borrow 2:: b1 then

else

Sj := a1 - borrow - bj
borrow:= 0

Sj := a1 + 2 - borrow - b1

borrow:= 1
{assuming a 2:: b, we have a - b = (sn-iSn-2 ... siso)z}

55. To determine which of two integers (we assume they are nonnegative), given in binary as a = (an-i ... aiao)z

and b = (bn-i ... bibo)z, is larger, we need to compare digits from the most significant end (i = n - 1) to the

least (i = 0), stopping if and when we find a difference. For variety here we record the answer as a character

string; in most applications it would probably be better to set compare to one of three code values (such as

-1, 1, and 0) to indicate which of the three possibilities held.

122

procedure compare(a, b: nonnegative integers)
i := n -1
while i > 0 and a, =bi

i := i - 1
if a; > b, then answer:= "a> b"
else if ai < b, then answer:= "a< b"
else answer:= "a= b"
return answer

Chapter 4 Number Theory and Cryptography

57. There is one division for each pass through the while loop. Also, each pass generates one digit in the base b

expansion. Thus the number of divisions equals the number of digits in the base b expansion of n. This is

just l logb n J + 1 (for example, numbers from 10 to 99, inclusive, have common logarithms in the interval

[1,2)). Therefore exactly llogbnJ + 1 divisions are required, and this is O(logn). (We are counting only the
actual division operation in the statement q := lq/b J. If we also count the implied division in the statement

ak := q mod b, then there are twice as many as we computed here. The big- 0 estimate is the same, of

course.)

59. The only time-consuming part of the algorithm is the while loop, which is iterated q times. The work done
inside is a subtraction of integers no bigger than a, which has log a bits. The results now follows from

Example 9.

SECTION 4.3 Primes and Greatest Common Divisors

The prime numbers are the building blocks for the natural numbers in terms of multiplication, just as the

elements (like carbon, oxygen, or uranium) are the building blocks of all matter. Just as we can put two

hydrogen atoms and one oxygen atom together to form water, every composite natural number is uniquely
constructed by multiplying together prime numbers. Analyzing numbers in terms of their prime factorizations
allows us to solve many problems, such as finding greatest common divisors. Prime numbers have fascinated
people for millennia, and many easy-to-state questions about them remain unanswered. Students interested

in pursuing these topics more should definitely consider taking a course in number theory.

1. In each case we can just use trial division up to the square root of the number being tested.

a) Since 21 = 3 · 7, we know that 21 is not prime.

b) Since 2 ,(29, 3 ,(29, and 5 ,(29, we know that 29 is prime. We needed to check for prime divisors only up

to J2§, which is less than 6.

c) Since 2 ,(71, 3 ,(71 , 5 ,(71, and 7 ,(71, we know that 71 is prime.

d} Since 2 ,(97, 3 ,(97, 5 ,(97, and 7 ,(97, we know that 97 is prime.

e) Since 111 = 3 · 37, we know that 111 is not prime.

f) Since 143 = 11 · 13, we know that 143 is not prime.

3. In each case we can use trial division, starting with the smallest prime and increasing to the next prime once

we find that a given prime no longer is a divisor of what is left. A calculator comes in handy. Alternatively,

one could use a factor tree.

a) We note that 2 is a factor of 88, and the quotient upon division by 2 is 44. We divide by 2 again, and then

again, leaving a quotient of 11. Since 11 is prime, we are done, and we have found the prime factorization:

88 = 23
· 11.

b) 126 = 2 . 63 = 2 . 3 . 21 = 2 . 3 . 3 . 7 = 2 . 32 . 7

c) 729 = 3 . 243 = 3 . 3 . 81 = 3 . 3 . 3 . 27 = 3 . 3 . 3 . 3 . 9 = 3 . 3 . 3 . 3 . 3 . 3 = 36

d} 1001 = 7. 143 = 7. 11 . 13

Section 4.3 Primes and Greatest Common Divisors 123

e) 1111=ll·101 (we know that 101 is prime because we have already tried all prime factors less than v'IOI)
f) 909090 = 2·454545 = 2·3·151515 = 2·3·3·50505 = 2·3·3·3·16835 = 2·3·3·3·5·3367= 2·3·3·3·5·7·481 =
2 . 3 . 3 . 3 . 5 . 7 . 13 . 37 = 2 . 33 . 5 . 7 . 13 . 37

5. 10! = 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 = 2 · 3 · 22
· 5 · (2 · 3) · 7 · 23

. 32
· (2. 5) = 28

. 34
. 52

. 7

7. The input is an integer n greater than 1. We try dividing it by all integers from 2 to yn, and if we find one

that leaves no remainder then we know that n is not prime. The pseudocode below accomplishes this.

procedure primetester(n: integer greater than 1)
isprime :=true
d := 2
while isprime and d :::; yn

if n mod d = 0 then isprime :=false
else d := d + 1

return isprime

9. We use what we know about factoring from algebra. In particular, we know that am+ 1 = (a+ l)(am-l -

am-2 + am- 3 + · · · - 1). (Notice that this works if and only if m is odd, because the final sign has to be a

plus sign.) Because a and m are both greater than 1, we know that 1 < a+ 1 < am+ 1. This provides a

factoring of am+ 1 into two proper factors, so am+ 1 is composite.

11. We give a proof by contradiction. Suppose that in fact log2 3 is the rational number p / q, where p and q are

integers. Since log2 3 > 0, we can assume that p and q are positive. Translating the equation log2 3 = p / q

into its exponential equivalent, we obtain 3 = 2p/q. Raising both sides to the qth power yields 3q = 2P. Now

this is a violation of the Fundamental Theorem of Arithmetic, since it gives two different prime factorizations

of the same number. Hence our assumption (that log2 3 is rational) must be wrong, and we conclude that

log2 3 is irrational.

13. This is simply an existence statement. To prove that it is true, we need only exhibit the primes. Indeed, 3,

5, and 7 satisfy the conditions. (Actually, this is the only example, and a harder problem is to prove that

there are no others.)

15. The prime factors of 30 are 2, 3, and 5. Thus we are looking for positive integers less than 30 that have none

of these as prime factors. Since the smallest prime number other than these is 7, and 72 is already greater

than 30, in fact only primes (and the number 1) will satisfy this condition. Therefore the answer is 1, 7, 11,

13, 17, 19, 23, and 29.

17. a) Since gcd(ll, 15) = 1, gcd(ll, 19) = 1, and gcd(15, 19) = 1, these three numbers are pairwise relatively

prime.

b) Since gcd(15,21) = 3 > 1, these three numbers are not pairwise relatively prime.

c) Since gcd(l2, 17) = 1, gcd(12, 31) = 1, gcd(12, 37) = 1, gcd(l 7, 31) = 1, gcd(l 7, 37) = 1, and gcd(31,

37) = 1, these four numbers are pairwise relatively prime. (Indeed, the last three are primes, and the prime

factors of the first are 2 and 3.)

d) Again, since no two of 7, 8, 9, and 11 have a common factor greater than 1, this set is pairwise relatively

prime.

19. The identity shown in the hint is valid, as can be readily seen by multiplying out the right-hand side (all the

terms cancel-telescope-except for 2ab and -1). We will prove the assertion by proving its contrapositive.

Suppose that n is not prime. Then by definition n = ab for some integers a and b each greater than 1 . Since

a > 1, 2a - 1, the first factor in the suggested identity, is greater than 1. Clearly the second factor is greater

than 1. Thus 2n - 1 = 2ab - 1 is the product of two integers each greater than 1, so it is not prime.

124 Chapter 4 Number Theory and Cryptography

21. We compute </>(n) here by enumerating the set of positive integers less than n that are relatively prime to n.

a) ¢(4) = l{l,3}1=2 b) ¢(10) = l{l,3, 7,9}1=4

c) ¢(13) = l{l, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}1 = 12

23. All the positive integers less than or equal to pk (and there are clearly pk of them) are less than pk and

relatively prime to pk unless they are a multiple of p. Since the fraction l/p of them are multiples of p, we
have </>(pk)= pk (l - 1/p) =pk - pk-1.

25. To find the greatest common divisor of two numbers whose prime factorizations are given, we just need to
take the smaller exponent for each prime.

a) The first number has no prime factors of 2, so the gcd has no 2's. Since the first number has seven factors

of 3, but the second number has only five, the gcd has five factors of 3. Similarly the gcd has a factor of 53 .

So the gcd is 35 . 53 .

b) These numbers have no common prime factors, so the gcd is 1 . c) 2317 d) 41. 43. 53

e) These numbers have no common prime factors, so the gcd is 1 .

f) The gcd of any positive integer and 0 is that integer, so the answer is 1111.

27. To find the least common multiple of two numbers whose prime factorizations are given, we just need to take
the larger exponent for each prime.

a) The first number has no prime factors of 2 but the second number has 11 of them, so the lcm has 11

factors of 2. Since the first number has seven factors of 3 and the second number has five, the lcm has seven

factors of 3. Similarly the lcm has a factor of 59 and a factor of 73 . So the lcm is 211 · 37 · 59 · 73 .

b) These numbers have no common prime factors, so the lcm is their product, 29 · 37 · 55 · 73 · 11 · 13 · 17.

c) 2331 d) 41·43 · 53 e) 212 · 313
· 517 · 721

, as in part (b)

f) It makes no sense to ask for a positive multiple of 0, so this question has no answer. Least common multiples
are defined only for positive integers.

29. First we find the prime factorizations: 92928 = 28 · 3 · 112 and 123552 = 25 · 33 · 11 · 13. Therefore

gcd(92928, 123552) = 25
· 3 · 11 = 1056 and lcm(92928, 123552) = 28 · 33 · 112 · 13 = 10872576. The re

quested products are (25
· 3 · 11) · (28

· 33
· 112

· 13) and (28
· 3 · 112

) · (25 · 33 · 11 · 13), both of which are
213 . 34 . 113 . 13 = 11,481,440,256.

31. The important observation to make here is that the smaller of any two numbers plus the larger of the two

numbers is always equal to the sum of the two numbers. Since the exponent of the prime p in gcd(a, b) is the
smaller of the exponents of p in a and in b, and since the exponent of the prime p in lcm(a, b) is the larger

of the exponents of p in a and in b, the exponent of p in gcd(a, b)lcm(a, b) is the sum of the smaller and

the larger of these two values. Therefore by the observation, it equals the sum of the two values themselves,

which is clearly equal to the exponent of p in ab. Since this is true for every prime p, we conclude that
gcd(a, b)lcm(a, b) and ab have the same prime factorizations and are therefore equal.

33. a) By Lemma 1, gcd(12, 18) is the same as the gcd of the smaller of these two numbers (12) and the remainder

when the larger (18) is divided by the smaller. In this case the remainder is 6, so gcd(12, 18) = gcd(12, 6).

Now gcd(12, 6) is the same as the gcd of the smaller of these two numbers (6) and the remainder when the

larger (12) is divided by the smaller, namely 0. This gives gcd(12,6) = gcd(6,0). But gcd(x,O) = x for all

positive integers, so gcd(6,0) = 6. Thus the answer is 6. In brief (the form we will use for the remaining

parts), gcd(12, 18) = gcd(l2,6) = gcd(6,0) = 6.

b) gcd(lll,201) = gcd(lll,90) = gcd(90,21) = gcd(21,6) = gcd(6,3) = gcd(3,0) = 3

Section 4.3 Primes and Greatest Common Divisors 125

c) gcd(lOOl, 1331) = gcd(lOOl, 330) = gcd(330, 11) = gcd(ll, 0) = 11

d) gcd(12345, 54321) = gcd(12345, 4941) = gcd(4941, 2463) = gcd(2463, 15) = gcd(15, 3) = gcd(3, 0) = 3

e) gcd(lOOO, 5040) = gcd(lOOO, 40) = gcd(40, 0) = 40

f) gcd(9888, 6060) = gcd(6060, 3828) = gcd(3828, 2232) = gcd(2232, 1596) = gcd(1596, 636) = gcd(636, 324)

= gcd(324, 312) = gcd(312, 12) = gcd(12, 0) = 12

35. In carrying out the Euclidean algorithm on this data, we divide successively by 55, 34, 21, 13, 8, 5, 3, 2,

and 1, so nine divisions are required.

37. One can compute gcd(2a - 1, 2b - 1) using the Euclidean algorithm. Let us look at what happens when we
do so. If b = 1, then the answer is just 1, which is the same as 2gcd(a,b) - 1 in this case. Otherwise, we

reduce the problem to computing gcd(2b - 1, (2a - 1) mod (2b - 1)). Now from Exercise 36 we know that

this second argument equals 2a mod b - 1 . Therefore the exponents involved in the continuing calculation are

b and a mod b-exactly the same quantities that are involved in computing gcd(a, b) ! It follows that when
the process terminates, the answer must be 2gcd(a,b) - 1, as desired.

39. a) This first one is easy to do by inspection. Clearly 10 and 11 are relatively prime, so their greatest common

divisor is 1, and 1 = 11 - 10 = (-1) · 10 + 1 · 11.

b) In order to find the coefficients s and t such that 21s + 44t = gcd(21, 44), we carry out the steps of the

Euclidean algorithm.

44 = 2. 21+2

21=10. 2+1

Then we work up from the bottom, expressing the greatest common divisor (which we have just seen to be 1)

in terms of the numbers involved in the algorithm, namely 44, 21, and 2. In particular, the last equation

tells us that 1 = 21 - 10 · 2, so that we have expressed the gcd as a linear combination of 21 and 2. But now

the first equation tells us that 2 = 44 - 2 · 21; we plug this into our previous equation and obtain

1 = 21 - 10 . (44 - 2 . 21) = 21 . 21 - 10 . 44.

Thus we have expressed 1 as a linear combination (with integer coefficients) of 21 and 44, namely gcd(21, 44) =

21·21+(-10)·44.

c) Again, we carry out the Euclidean algorithm. Since 48 = 1·36+ 12, and 12 I 36, we know that gcd(36, 48) =

12. From the equation shown here, we can immediately write 12 = (-1) · 36 + 48.

d) The calculation of the greatest common divisor takes several steps:

55 = 1·34 + 21

34 = 1. 21+13

21=1. 13 + 8

13 = 1·8 + 5

8=1·5+3

5=1·3+2

3=1·2+1

Then we need to work our way back up, successively plugging in for the remainders determined in this

126

calculation:

Chapter 4

1=3-2

= 3 - (5 - 3) = 2. 3 - 5

= 2. (8 - 5) - 5 = 2. 8 - 3. 5

= 2 . 8 - 3 . (13 - 8) = 5 . 8 - 3 . 13

= 5 . (21 - 13) - 3 . 13 = 5 . 21 - 8 . 13

= 5. 21 - 8. (34 - 21) = 13. 21 - 8. 34

Number Theory and Cryptography

= 13. (55 - 34) - 8. 34 = 13. 55 - 21 . 34

e) Here are the two calculations-down to the gcd using the Euclidean algorithm, and then back up by

substitution until we have expressed the gcd as the desired linear combination of the original numbers.

Since 3 I 9, we have gcd(ll 7, 213) = 3.

3 = 12 - 9

213 = 1. 117 + 96

117 = 1 . 96 + 21

96 = 4. 21+12

21=1. 12 + 9

12 = 1·9 + 3

= 12 - (21 - 12) = 2 . 12 - 21

= 2. (96 - 4. 21) - 21 = 2. 96 - 9. 21

= 2 . 96 - 9 . (117 - 96) = 11 . 96 - 9 . 117

= 11. (213 - 117) - 9. 117 = 11. 213 - 20. 117

f) Clearly gcd(O, 223) = 223, so we can write 223 = s · 0 + 1 · 223 for any integer s.

g) Here are the two calculations-down to the gcd using the Euclidean algorithm, and then back up by

substitution until we have expressed the gcd as the desired linear combination of the original numbers.

Thus the greatest common divisor is 1.

1=10-3·3

2347 = 19. 123 + 10

123 = 12 . 10 + 3

10=3·3+1

= 10 - 3. (123 - 12. 10) = 37. 10 - 3. 123

= 37. (2347 - 19. 123) - 3. 123 = 37. 2347 - 706. 123

h) Here are the two calculations-down to the gcd using the Euclidean algorithm, and then back up by

substitution until we have expressed the gcd as the desired linear combination of the original numbers.

4666 = 3454 + 1212

3454 = 2 . 1212 + 1030

1212 = 1030 + 182

1030 = 5 . 182 + 120

182 = 120 + 62

120 = 62 + 58

62 = 58 + 4

58 = 14. 4 + 2

Section 4.3 Primes and Greatest Common Divisors

Since 2 I 4, the greatest common divisor is 2.

2 = 58 -14. 4

= 58 - 14. (62 - 58) = 15. 58 - 14. 62

= 15 . (120 - 62) - 14. 62 = 15 . 120 - 29 . 62

= 15 . 120 - 29. (182 - 120) = 44. 120 - 29 . 182

= 44 . (1030 - 5 . 182) - 29 . 182 = 44. 1030 - 249 . 182

= 44 . 1030 - 249 . (1212 - 1030) = 293 . 1030 - 249 . 1212

= 293. (3454 - 2 . 1212) - 249 . 1212 = 293. 3454 - 835 . 1212

= 293. 3454 - 835. (4666 - 3454) = 1128. 3454 - 835 . 4666

127

i) Here are the two calculations-down to the gcd using the Euclidean algorithm, and then back up by

substitution until we have expressed the gcd as the desired linear combination of the original numbers.

Thus 1 is the greatest common divisor.

1=5-4

11111=9999+1112

9999 = 8 . 1112 + 1103

1112 = 1103 + 9

1103 = 122 . 9 + 5

9=5+4

5=4+1

= 5 - (9 - 5) = 2 . 5 - 9

= 2 . (1103 - 122 . 9) - 9 = 2 . 1103 - 245 . 9

= 2. 1103 - 245. (1112 - 1103) = 247. 1103 - 245. 1112

= 247. (9999 - 8. 1112) - 245. 1112 = 247. 9999 - 2221 . 1112

= 247. 9999 - 2221. (11111 - 9999) = 2468. 9999 - 2221. 11111

41. When we apply the Euclidean algorithm we obtain the following quotients and remainders: Qi = 0, r 2 = 26,

Q2 = 3, r 3 = 13, q3 = 2. Note that n = 3. Thus we compute the successive s's and t's as follows, using the

given recurrences:

s2 = so - Qi si = 1 - 0 · 0 = 1 ,

S3 = Si - Q2S2 = 0 - 3 · 1 = -3,

t2 = to - Qi ti = 0 - 0 · 1 = 0
t3 = ti - Q2t2 = 1 - 3 . 0 = 1

Thus we have s3a + t3b = (-3) · 26 + 1 · 91 = 13, which is gcd(26, 91).

43. When we apply the Euclidean algorithm we obtain the following quotients and remainders: Qi = 1, r 2 = 55,

Q2=l, r3=34, q3=l, r4=21, q4=l, rs=l3, Qs=l, r5=8, q5=l, r1=5, q7=l, rs=3, Qs=l,
rg = 2, q9 = 1, r 10 = 1, q10 = 2. Note that n = 10. Thus we compute the successive s's and t's as follows,

using the given recurrences:

S2 =So - QiSi = 1 - 1·0 = 1,

S3 =Si - Q2S2 = 0 - 1·1 = -1,
S4 = S2 - Q3S3 = 1 - 1 · (-1) = 2,

Ss = S3 - Q4S4 = -1 - 1 · 2 = -3,

S5 = S4 - QsSs = 2 - 1 · (-3) = 5,

s7 = ss - q5s5 = -3 - 1 · 5 = -8,

t2 =to - Qiti = 0 - 1·1 = -1
t3 =ti - q2t2 = 1 - 1. (-1) = 2

t4 = t2 - q3t3 = -1 - 1 . 2 = -3

ts = t3 - q4t4 = 2 - 1 · (-3) = 5

t5 = t4 - qsts = -3 - 1 . 5 = -8

t1 = ts - q5t5 = 5 - 1 · (-8) = 13

128

83 = 85 - q187 = 5 - 1 · (-8) = 13,
89 = 87 - q8 8 8 = -8 - 1 · 13 = -21,
810 = 83 - qg8g = 13 - 1 · (-21) = 34,

Chapter 4 Number Theory and Cryptography

ts = t5 - q7t1 = -8 - 1·13 = -21

tg = t1 - q8t 8 = 13 - 1 · (-21) = 34
tio =ts - q9 t9 = -21 - 1 · 34 = -55

Thus we have 810a + tiob = 34 · 144 + (-55) · 89 = 1, which is gcd(144, 89).

45. We start with the pseudocode for the Euclidean algorithm (Algorithm 1) and add variables to keep track of
the 8 and t values. We need three of them, since the new 8 depends on the previous two s's, and similarly
for t. We also need to keep track of q.

procedure extended Euclidean(a, b: positive integers)
x :=a
y := b
oldolds := 1
olds:= 0
oldoldt := 0
oldt := 1
while y "I 0

q := x div y
r := x mod y
x := y
y := r
8 := oldolds - q · olds
t := oldoldt - q · oldt
oldolds := olds
oldoldt := oldt
olds := 8
oldt := t

{ gcd(a, b) is x, and the Bezout coefficients are given by (oldold8)a + (oldoldt)b = x }

47. Obviously there are no definitive answers to these problems, but we present below a reasonable and satisfying
rule for forming the sequence in each case.

a) There are l's in the prime locations and O's elsewhere. In other words, the nth term of the sequence is 1

if n is a prime number and 0 otherwise.

b) The suspicious 2's occurring every other term and the appearance of the 11 and 13 lead us to discover

that the nth term is the smallest prime factor of n (and is 1 when n = 1) .

c) The nth term is the number of positive divisors of n. For example, the twelfth term is 6, since 12 has the

positive divisors 1, 2, 3, 4, 6, and 12. A tip-off to get us going in the right direction is that there are 2's in

the prime locations.

d) Perhaps the composer of the problem had something else in mind, but one rule here is that the nth term is

0 if and only if n has a repeated prime factor; the l's occur at locations for which n is "square-free" (has no

factor, other than 1, that is a perfect square). For example, 12 has the square 22 , so the twelfth term is 0.

e) We note that all the terms (after the first one) are primes. This leads us to guess that the nth term is the

largest prime less than or equal to n (and is 1 when n = 1).

f) Each term comes from the one before it by multiplying by a certain number. The multipliers are 2, 3,

5, 7, 11, 13, 17, 19, and 23~the primes. So the rule seems to be that we obtain the next term from the

nth term by multiplying by the nth prime number (and we start at 1). In other words, the nth term is the

product of the smallest n - 1 prime numbers.

49. Consider the product n(n + l)(n + 2) for some integer n. Since every second integer is even (divisible by 2),

this product is divisible by 2. Since every third integer is divisible by 3, this product is divisible by 3.

Therefore this product has both 2 and 3 in its prime factorization and is therefore divisible by 2 · 3 = 6.

Section 4.3 Primes and Greatest Common Divisors 129

51. It is hard to know how to get started on this problem. To some extent, mathematics is an experimental

science, so it would probably be a good idea to compute n2 - 79n + 1601 for several positive integer values

of n to get a feel for what is happening. Using a computer, or at least a calculator, would be helpful. If
we plug in n = 1, 2, 3, 4, and 5, then we get the values 1523, 1447, 1373, 1301, and 1231, all of which are

prime. This may lead us to believe that the proposition is true, but it gives us no clue as to how to prove it.
Indeed, it seems as if it would be very hard to prove that this expression always produces a prime number,
since being prime means the absence of nontrivial factors, and nothing in the expression seems to be very

helpful in proving such a negative assertion. (The fact that we cannot factor it algebraically is irrelevant-in

fact, if it factored algebraically, then it would essentially never be prime.) Perhaps we should try some more

integers. If we do so, we find a lot more prime numbers, but we are still skeptical. Well, perhaps there is some
way to arrange that this expression will have a factor. How about 1601? Well, yes! If we let n = 1601, then
all three terms will have 1601 as a common factor, so that 1601 is a factor of the entire expression. In fact,

16012 - 79 · 1601 + 1601 = 1601 · 1523. So we have found a counterexample after all, and the proposition is

false. Note that this was not a problem in which we could proceed in a calm, calculated way from problem

to solution. Mathematics is often like that-lots of false leads and approaches that get us nowhere, and then
suddenly a burst of insight that solves the problem. (The smallest n for which this expression is not prime is
n = 80; this gives the value 1681 = 41 · 41.)

53. Here is one way to find a composite term in the sequence. If we set k = 1, then we get a + b. That number
is greater than 1, but it may not be composite. So let's increase k by a+ b, which will have the effect of
adding a multiple of a+ b to our previous answer, and we will therefore get a composite number, because

a+ b will be a nontrivial factor of it. So setting k =a+ b + 1 should work. Indeed, with that choice we have

ak + b = a(a + b + 1) + b = a2 +ab+ a+ b, which factors nicely as (a+ l)(a + b). Since a and b are both

positive integers, both factors are greater than 1, and we have our composite number.

55. Recall that the proof that there are infinitely many primes starts by assuming that there are only finitely

many primes P1 , P2 , ... , Pn , and forming the number P1P2 · · · Pn + 1 . This number is either prime or has

a prime factor different from each of the primes p 1 , p2, ... , Pn; this shows that there are infinitely many

primes. So, let us suppose that there are only finitely many primes of the form 4k + 3, namely q1 , q2, ... , qn,

where q1 = 3, q2 = 7, and so on.

What number can we form that is not divisible by any of these primes, but that must be divisible by a

prime of the form 4k + 3? We might consider the number 4q1q2 · · · qn + 3. Unfortunately, this number is not

prime, as it is is divisible by 3 (because q1 = 3). Instead we consider the number Q = 4q1q2 · · ·qn -1. Note

that Q is of the form 4k + 3 (where k = q1 q2 · · · qn - 1). If Q is prime, then we have found a prime of the

desired form different from all those listed. If Q is not prime, then Q has at least one prime factor not in

the list q1 , q2 , ... , qn , because the remainder when Q is divided by q1 is q1 - 1 , and q1 - 1 =I- 0. Therefore
q1 A Q for j = 1, 2, ... , n. Because all odd primes are either of the form 4k + 1 or of the form 4k + 3, and the

product of primes of the form 4k + 1 is also of this form (because (4k + 1) (4m + 1) = 4(4km + k + m) + 1),

there must be a factor of Q of the form 4k + 3 different from the primes we listed. This complete the proof.

57. We need to show that this function is one-to-one and onto. In other words, if we are given a positive integer

x, we must show that there is exactly one positive rational number m/n (written in lowest terms) such that

K(m/n) = x. To do this, we factor x into its prime factorization and then read off them and n such that

K (m / n) = x. The primes that occur to even powers are the primes that occur in the prime factorization

of m, with the exponents being half the corresponding exponents in x; and the primes that occur to odd
powers are the primes that occur in the prime factorization of n, with the exponents being half of one more
than the exponents in x. Since this uniquely determines m and n, there is one and only one fraction, in

130 Chapter 4 Number Theory and Cryptography

lowest terms, that maps to x under K.

SECTION 4.4 Solving Congruences

Many of these exercises are reasonably straightforward calculations, but the amount of arithmetic involved in

some of them can be formidable. Look at the worked out examples in the text if you need help getting the

hang of it. The theoretical exercises, such as #18 and #19 give you a good taste of the kinds of proofs in an
elementary number theory course.

1. We simply need to show that 15 · 7 = 1 (mod 26), or in other words, that 15 · 7 - 1 is divisible by 26. But

this quantity is 104, which is 26 · 4.

3. We want to find an integer k such that 4k is 1 greater than a multiple of 9. We compute 4 · 1 = 4 = 0 · 9 + 4,
4. 2 = 8 = 0. 9 + 8, 4. 3 = 12 = 1·9 + 3, 4. 4 = 16 = 1·9 + 7, 4. 5 = 20 = 2. 9 + 2, 4. 6 = 24 = 2. 9 + 6,
4 · 7 = 28 = 3 · 9 + 1. Therefore an inverse of 4 modulo 9 is 7.

5. a) Following the procedure of Example 2, we carry out the Euclidean algorithm to find gcd(4, 9):

9=2·4+1

4 = 4 · 1
Then we work backwards to rewrite the gcd (the last nonzero remainder, which is 1 here) in terms of 4 and 9:

1=9-2·4

Therefore the Bezout coefficients of 9 and 4 are 1 and -2, respectively. The coefficient of 4 is our desired

answer, namely -2, which is the same as 7 modulo 9. Note that this agrees with our answer in Exercise 3.

b) We proceed as above:
141=7.19 + 8

19 = 2. 8 + 3

8=2·3+2

3=1·2+1

2=2·1
Then we work backwards to rewrite the gcd (the last nonzero remainder, which is 1 here) in terms of 141

and 19:
1=3-1·2

= 3 - 1 . (8 - 2 . 3) = 3 . 3 - 1 . 8

= 3 . (19 - 2 . 8) - 1 . 8 = 3 . 19 - 7. 8

= 3. 19 - 7. (141 - 7. 19) = (-7). 141+52. 19

Therefore the Bezout coefficient of 19 is 52, and that is an inverse of 19 modulo 141.

c) We proceed as above:
89 = 1·55 + 34

55 = 1·34 + 21

34=1·21+13

21=1·13 + 8

13 = 1·8 + 5

8=1·5+3

5=1·3+2

3=1·2+1

2 = 1·2

Section 4.4 Solving Congruences 131

Then we work backwards to rewrite the gcd (the last nonzero remainder, which is 1 here) in terms of 89

and 55:
1=3-1·2

= 3 - 1 . (5 - 1 . 3) = 2 . 3 - 1 . 5

= 2 . (8 - 1 . 5) - 1 . 5 = 2 . 8 - 3 . 5

= 2. 8 - 3. (13 - 1 . 8) = 5. 8 - 3. 13

= 5 . (21 - 1 . 13) - 3 . 13 = 5 . 21 - 8 . 13

= 5. 21 - 8. (34 - 1. 21) = 13. 21 - 8. 34

= 13. (55 - 1 . 34) - 8. 34 = 13. 55 - 21 . 34

= 13. 55 - 21 . (89 - 1 . 55) = 34. 55 - 21 . 89

Therefore the Bezout coefficient of 55 is 34, and that is an inverse of 55 modulo 89.

d) We proceed as above:
232 = 2 . 89 + 54

89 = 1·54 + 35

54 = 1. 35 + 19

35 = 1. 19 + 16

19 = 1·16 + 3

16=5.3+1

3 = 3 · 1

Then we work backwards to rewrite the gcd (the last nonzero remainder, which is 1 here) in terms of 232

and 89:
1=16 - 5. 3

= 16 - 5. (19 - 1 . 16) = 6. 16 - 5. 19

= 6 . (35 - 1 . 19) - 5 . 19 = 6 . 35 - 11 . 19

= 6. 35 - 11. (54 - 1. 35) = 17. 35 - 11. 54

= 17. (89 - 1. 54) - 11. 54 = 17. 89 - 28. 54

= 17. 89 - 28 . (232 - 2 . 89) = 73 . 89 - 28 . 232

Therefore the Bezout coefficient of 89 is 73, and that is an inverse of 89 modulo 232.

7. We follow the hint. Suppose that we had two inverses of a modulo m, say b and c. In symbols, we would

have ba = 1 (mod m) and ca = 1 (mod m) . The first congruence says that m divides ba - 1 , and the second

says that m divides ca - 1. Therefore m divides the difference (ba -1) - (ca -1) = ba - ca. (The difference

of two multiples of m is a multiple of m.) Thus ba =ca (mod m). It follows immediately from Theorem 7

in Section 4.3 (the roles of a, b, and c need to be permuted) that b = c (mod m), which is what we wanted
to prove.

9. In Exercise 5a we found that an inverse of 4 modulo 9 is 7. Therefore we multiply both sides of this equation

by 7, obtaining x = 35 = 8 (mod 9). As a check, we compute 4 · 8 = 32 = 5 (mod 9).

11. Our answers are not unique, of course-anything in the same congruence class works just as well.

a) In Exercise 5b we found that an inverse of 19 modulo 141 is 52. Therefore we multiply both sides of this
equation by 52, obtaining x = 208 = 67 (mod 141). As a check, we compute 19 · 67 = 1273 = 4 (mod 141).

b) In Exercise 5c we found that an inverse of 55 modulo 89 is 34. Therefore we multiply both sides of this

equation by 34, obtaining x = 1156 = 88 (mod 89). As a check, we compute 55 · 88 = 55 · (-1) = -55 =
34 (mod 89).

132 Chapter 4 Number Theory and Cryptography

c) In Exercise 5d we found that an inverse of 89 modulo 232 is 73. Therefore we multiply both sides of this
equation by 73, obtaining x = 146 (mod 232). As a check, we compute 89 · 146 = 12994 = 2 (mod 232).

13. We follow the hint. Adding 6 to both sides gives the equivalent congruence 15x2 + 19x + 6 = 0 (mod 11),

because 5 + 6 = 11 = 0 (mod 11). This factors as (5x + 3)(3x + 2) = 0 (mod 11). Because there are

no non-zero divisors of 0 working modulo 11, we conclude that the solutions are precisely the solutions of
5x + 3 = 0 (mod 11) and 3x + 2 = 0 (mod 11). We solve these by the method of Example 3. By inspection
(trial-and-error) or working it out through the Euclidean algorithm and back-substituting, we find that an

inverse of 5 modulo 11is9, and multiplying both sides of 5x+3 = 0 (mod 11) by 9 yields x+27 = 0 (mod 11),

so x = -27 = 6 (mod 11). Similarly, an inverse of 3 modulo 11 is 4, and we get x = -8 = 3 (mod 11). So the

solution set is {3, 6} (and anything congruent to these modulo 11). Plugging these values into the original

equation to check, we have 15·32 +19 · 3 + 6 = 198 = 0 (mod 11) and 15·62+19 · 6 + 6 = 660 = 0 (mod 11).

15. The hypothesis tells us that m divides ac- be, which is the product (a- b)c. Let m' be m/ gcd(c, m). Then

m' is a factor of m, so certainly m' J(a - b)c. Now since all the common factors of m and c were divided

out of m to get m', we know that m' is relatively prime to c. It follows from Lemma 2 in Section 4.3 that
m' I a - b. But this means that a= b (mod m'), exactly what we were trying to prove.

17. We want to find numbers x such that x2 = 1 (mod p), in other words, such that p divides x2 - 1. Factoring

this expression, we see that we are seeking numbers x such that p I (x + 1) (x - 1) . By Lemma 3 in Section 4.3,

this can only happen if p I x + 1 or p I x - 1. But these two congruences are equivalent to the statements

x = -1 (mod p) and x = 1 (mod p) .

19. a) If two of these integers were congruent modulo p, say ia and ja, where 1 ::::; i < j < p, then we would

have p I ja - ia, or p I (j - i)a. By Lemma 2 (or Lemma 3) in Section 4.3, since a is not divisible by p, p must

divide j - i. But this is impossible, since j - i is a positive integer less than p. Therefore no two of these

integers are congruent modulo p.

b) By part (a), since no two of a, 2a, ... , (p - l)a are congruent modulo p, each must be congruent to a

different number from 1 to p- 1. Therefore if we multiply them all together, we will obtain the same product,

modulo p, as if we had multiplied all the numbers from 1 to p - 1. In symbols,

a· 2a · 3a · · · (p - l)a = 1 · 2 · 3 · · · (p - 1) (mod p).

The left-hand side of this congruence is clearly (p - 1)! · aP- 1, and the right-hand side is just (p - l)!, as

desired.

c) Wilson's theorem says that (p - 1)! is congruent to -1 modulo p. Therefore the congruence in part (b)
says that (-1) · ap-l = -1 (mod p). Multiplying both sides by -1, we see that ap-l = 1 (mod p), as desired.

Note that we already assumed the hypothesis that p ,./'a in part (a).
d) If p I a, then both sides of aP =a (mod p) are 0 modulo p, so the congruence holds. If not, then we just
multiply the result obtained in part (c) by a.

21. Since 2, 3, 5, and 11 are pairwise relatively prime, we can use the Chinese remainder theorem. The answer

will be unique modulo 2 · 3 · 5 · 11 = 330. Using the notation in the text, we have a 1 = 1, m 1 = 2,

a2 = 2, m2 = 3, a3 = 3, m3 = 5, a4 = 4, m4 = 11, m = 330, Ali= 330/2 = 165, M2 = 330/3 = 110,
1\13 = 330/5 = 66, l'vl4 = 330/11=30. Then we need to find inverses y, of M, modulo m, for i = 1,2,3,4.

This can be done by inspection (trial and error), since the moduli here are so small, or systematically using

the Euclidean algorithm, as in Exercise 5; we find that y1 = 1, y2 = 2, y3 = 1, and y4 = 7 (for this last one,

30 = 8 (mod 11), so we want to solve 8y4 = 1 (mod 11), and we observe that 8 · 7 = 56 = 1 (mod 11)). Thus

our solution is x = 1 · 165 · 1 + 2 · 110 · 2 + 3 · 66 · 1 + 4 · 30 · 7 = 1643 = 323 (mod 330). So the solutions are
all integers of the form 323 + 330k, where k is an integer.

Section 4.4 Solving Congruences 133

23. By definition, the first congruence can be written as x = 3t + 2 where t is an integer. Substituting this

expression for x into the second congruence tells us that 3t + 2 = 1 (mod 4), which can easily be solved

to show that t = 1 (mod 4). From this we can write t = 4u + 1 for some integer u. Thus x = 3t + 2 =
3(4u + 1) + 2 = 12u + 5. We plug this into the third congruence to obtain 12u + 5 = 3 (mod 5), which we
easily solve to give u = 4 (mod 5). Hence u = 5v + 4, and so x = 12u + 5 = 12(5v + 4) + 5 = 60v + 53. We

check our answer by confirming that 53 = 2 (mod 3), 53 = 1 (mod 4), and 53 = 3 (mod 5).

25. We simply translate the steps of the calculation given in the proof of Theorem 2 into pseudocode. Of course,

hidden in line 7 below is a multi-step process of finding inverses in modular arithmetic, which can be accom

plished by using the Euclidean algorithm and back-substituting, as in Example 2. The last loop reduces the

answer x to its simplest form modulo m. All solutions are then of the form x + mk, where m is the product

of the moduli and k is an integer.

procedure chinese(m 1 , m2, ... , mn : relatively prime positive integers; a 1 , a 2 , ... , an : integers)
m:= 1
fork:= 1 ton

m :=m·mk
fork:= 1 ton

Mk:= m/mk
Yk := Mi; 1 mod mk

x := 0
fork:= 1 ton

x := x + akMkYk
while x 2: m

x := x-m
return x {the smallest solution to the system { x = ak (mod mk), k = 1, 2, ... , n } }

27. We cannot apply the Chinese remainder theorem directly, since the moduli are not pairwise relatively prime.

However, we can, using the Chinese remainder theorem, translate these congruences into a set of congruences

that together are equivalent to the given congruence. Since we want x = 4 (mod 12), we must have x = 4 =
1 (mod 3) and x = 4 = 0 (mod 4). Similarly, from the third congruence we must have x = 1 (mod 3) and

x = 2 (mod 7). Since the first congruence is consistent with the requirement that x = 1 (mod 3), we see that

our system is equivalent to the system x = 7 (mod 9), x = 0 (mod 4), x = 2 (mod 7). These can be solved
using the Chinese remainder theorem (see Exercise 21 or Example 5) to yield x = 16 (mod 252). Therefore

the solutions are all integers of the form 16 + 252k, where k is an integer.

29. We will argue for the truth of this statement using the Fundamental Theorem of Arithmetic. What we must

show is that m1 m 2 · · · mn I a - b. Look at the prime factorization of both sides of this proposition. Suppose

that p is a prime appearing in the prime factorization of the left-hand side. Then p I mJ for some j. Since

the m, 's are relatively prime, p does not appear as a factor in any of the other m, 's. Now we know from the

hypothesis that mJ I a - b. Therefore a - b contains the factor p in its prime factorization, and p must appear

to a power at least as large as the power to which it appears in m 1 . But what we have just shown is that
each prime power pr in the prime factorization of the left-hand side also appears in the prime factorization of

the right-hand side. Therefore the left-hand side does, indeed, divide the right-hand side.

31. We are asked to solve the simultaneous congruences x = 1 (mod 2) and x = 1 (mod 3). The solution will be

unique modulo 2 · 3 = 6. By inspection we see that the answer is simply that x = 1 (mod 6). The solution
set is { ... ,-ll,-5,1,7,13, ... }.

33. Fermat's little theorem tells us that 712 = 1 (mod 13). Note that 121
712-10 . 7 = (712)10. 7 = 110 . 7 = 7 (mod 13).

10 · 12 + 1. Therefore 7121

134 Chapter 4 Number Theory and Cryptography

35. Fermat's little theorem tells us that under the given conditions ap-l = 1 (mod p). Therefore aP-2 . a =

a· aP-2 = aP-l = 1 (mod p). This is precisely the definition that aP-2 is an inverse of a modulo p.

37. a) We calculate 2340 = (210)34 = 134 = 1 (mod 11), since Fermat's little theorem says that 210 = 1 (mod 11).

b) We calculate 2340 = (2·5)
68 =3268 =168 =1(mod31), since 32=1(mod31).

c) Since 11 and 31 are relatively prime, and 11·31 = 341, it follows from the first two parts and Exercise 29
that 2340 = 1 (mod 341).

39. a) By Fermat's little theorem we know that 56 = 1 (mod 7); therefore 51998 = (56)333 = 1333 = 1 (mod 7),

and so 52003 = 55 · 51998 = 3125 · 1 = 3 (mod 7). So 52003 mod 7 = 3. Similarly, 510 = 1 (mod 11);

therefore 52000 = (5 10)200 = 1200 = 1 (mod 11), and so 52003 = 53 · 52000 = 125 · 1 = 4 (mod 11). So
52003 mod 11 = 4. Finally, 512 = 1 (mod 13); therefore 51992 = (512)166 = 1166 = 1 (mod 13), and so
52003 = 511

· 51992 = 48,828, 125 · 1 = 8 (mod 13). So 52003 mod 13 = 8.

b) We now apply the Chinese remainder theorem to the results of part (a), as in Example 5. Let m =

7 · 11 · 13 = 1001, llfi = m/7 = 143, 1112 = m/11 = 91, and M 3 = m/13 = 77. We see that 5 is an

inverse of 143 modulo 7. since 143 = 3 (mod 7), and 3 · 5 = 15 = 1 (mod 7). Similarly, 4 is an inverse
of 91 modulo 11, and 12 is an inverse of 77 modulo 13. (An algorithm to compute inverses-if we don't

want to find them by inspection as we've done here-is illustrated in Example 2.) Therefore the answer is

(3 · 143 · 5 + 4 · 91·4 + 8 · 77 · 12) mod 1001=10993 mod 1001 = 983.

41. Let q be a (necessarily odd) prime dividing 2P - 1. By Fermat's little theorem, we know that q I 2q-l - 1.
Then from Exercise 37 in Section 4.3 we know that gcd(2P- l, 2q-l -1) = 2gcd(p.q-l) -1. Since q is a common

divisor of 2P - 1 and 2q-l - 1, we know that gcd(2P - 1, 2q-l - 1) > 1. Hence gcd(p, q - 1) = p, since the

only other possibility, namely gcd(p, q - 1) = 1, would give us gcd(2P - 1, 2q-l - 1) = 1. Hence p I q - 1, and

therefore there is a positive integer m such that q - 1 = mp. Since q is odd, m must be even, say m = 2k,

and so every prime divisor of 2P - 1 is of the form 2kp + 1. F\lfthermore, products of numbers of this form

are also of this form, since (2k1p + 1)(2k2p + 1) = 4k1k2p2 + 2k1p + 2k2p + 1 = 2(2k1k2p + k1 + k3)p + 1.

Therefore all divisors of 2P - 1 are of this form.

43. To decide whether 211 - 1 = 204 7 is prime, we need only look for a prime factor not exceeding J2647 ~ 45.

By Exercise 41 every such prime divisor must be of the form 22k + 1. The only candidate is therefore 23. In

fact 2047 = 23 · 89, so we conclude that 2047 is not prime.

We can take the same approach for 217 - 1 = 131,071, but we need either computer algebra software or

patience with a calculator. By Exercise 41 every prime divisor of 217 - 1 must be of the form 34k + 1, so we

need to try all such divisors (or at least those that are not obviously nonprime) up to .Jl31,071 ~ 362, which

means up to k = 10. No number of this form divides 131,071, so we conclude that it is prime.

45. First note that 2047 = 23·89, so 2047 is composite. To apply Miller's test, we write 2047-1 = 2046 = 2·1023,

so s = 1 and t = 1023. We must show that either 21023 = 1 (mod 204 7) or 21023 = -1 (mod 204 7) . To

compute, we write 21023 = (211) 93 = 204893 = 193 = 1 (mod 2047), as desired. (We could also compute this

using the modular exponentiation algorithm given in Section 4.2-see Example 12 in that section.)

47. We factor 2821 = 7·13·31. We must show that this number meets the definition of Carmichael number, namely

that b2820 = 1 (mod 2821) for all b relatively prime to 2821. Note that if gcd(b, 2821) = 1, then gcd(b, 7) =

gcd(b, 13) = gcd(b, 31) = 1. Using Fermat's little theorem we find that b6 = 1 (mod 7), b12 = 1 (mod 13),

and b30 = 1 (mod 31). It follows that b2820 = (b6) 470 = 1 (mod 7), b2820 = (b12)235 = 1 (mod 13),

and b2820 = (b30)94 = 1 (mod 31). By Exercise 29 (or the Chinese remainder theorem) it follows that

b2820 = 1 (mod 2821), as desired.

Section 4.4 Solving Congruences 135

49. a) If we multiply out this expression, we get n = 1296m3 + 396m2 + 36m + 1. Clearly 6m In - 1, 12m In - 1,
and 18m I n - 1. Therefore, the conditions of Exercise 48 are met, and we conclude that n is a Carmichael
number.

b) Letting m = 51 gives n = 172,947,529. We note that 6m + 1 = 307, 12m + 1 = 613, and 18m + 1 = 919

are all prime.

51. It is straightforward to calculate the remainders when the integers from 0 to 14 are divided by 3 and by 5.
For example, the remainders when 10 is divided by 3 and 5 are 1 and 0, respectively, so we represent 10 by
the pair (1, 0). The exercise is simply asking us to tabulate these remainders, as in Example 7.

0 = (0, 0)

1 = (1,1)
2 = (2, 2)

3 = (0, 3)
4=(1,4)
5 = (2, 0)

6=(0,1)

7 = (1,2)
8 = (2, 3)

9 = (0,4)

10 = (1,0)
11 = (2, 1)

12 = (0, 2)

13=(1,3)
14 = (2,4)

53. The method of solving a system of congruences such as this is given in the proof of Theorem 2. Here we have

m1 = 99, m2 = 98, m3 = 97, and m4 = 95, so that m = 99 · 98 · 97 · 95 = 89403930. We compute the values

Mk = m/mk and obtain Mi = 903070, M2 = 912285, M 3 = 921690, and M 4 = 941094. Next we need to
find the inverses Yk of Mk modulo mk. To do this we first replace each Mk by its remainder modulo mk (to
make the arithmetic easier), and then apply the technique shown in Example 2. For k = 1 we want to find

the inverse of 903070 modulo 99, which is the same as the inverse of 903070 mod 99, namely 91. To do this

we apply the Euclidean algorithm to express 1 as a linear combination of 91 and 99.

99 = 91+8

91=11·8 + 3

8=2·3+2

3=2+1

:.1=3-2

= 3 - (8 - 2 . 3) = 3 . 3 - 8

= 3 . (91 - 11 . 8) - 8 = 3 . 91 - 34. 8

= 3. 91 - 34. (99 - 91) = 37. 91 - 34. 99

We therefore conclude that the inverse of 91 modulo 99 is 37, so we have y1 = 37. Similar calculations show
that Y2 = 33, y3 = 24, and y4 = 4. Continuing with the procedure outlined in the proof of Theorem 2, we

now form the sum of the products akMkYk, and this will be our solution. We have

65. 903070. 37 + 2. 912285. 33 + 51. 921690. 24 + 10. 941094. 4 = 3397886480.

We want our answer reduced modulo m, so we divide by 89403930 and take the remainder, obtaining 537140.

(All of these calculations are not difficult using a scientific calculator.) Finally, let us check our answer:

537140 mod 99 = 65, 537140 mod 98 = 2, 537140 mod 97 = 51, 537140 mod 95 = 10.

55. For the first question we seek an exponent n such that 2n = 5 (mod 19). For the second we want 2n =

6 (mod 19). There is no known efficient algorithm for finding these exponents, so we might as well just
start computing powers of 2 modulo 19. In each case, we just need to multiply the previous result by 2,
working modulo 19. We have 22 = 4 (mod 19), 23 = 2 · 4 = 8 (mod 19), 24 = 2 · 8 = 16 (mod 19),

25 = 2·16 = 32 = 13 (mod 19), 26 = 2 · 25 = 2 · 13 = 26 = 7 (mod 19), 27 = 2 · 7 = 14 (mod 19), 28 = 2·14 =

28 = 9 (mod 19), 29 = 2·9 = 18 (mod 19), 210 =2·18 = 36 = 17 (mod 19), 211 =2·17 = 34 = 15 (mod 19),

212 = 2 · 15 = 30 = 11(mod19), 213 = 2 · 11 = 22 = 3 (mod 19), 214 = 2 · 3 = 6 (mod 19). Finally! So

we conclude that the discrete logarithm of 6 to the base 2 modulo 19 is 14. Continuing the calculation, we

have 215 = 2 · 6 = 12 (mod 19), 216 = 2 · 12 = 24 = 5 (mod 19). So the discrete logarithm of 5 to the base 2
modulo 19 is 16.

136 Chapter 4 Number Theory and Cryptography

57. A computer algebra system such as Maple facilitates the modular arithmetic calculations. We repeatedly

multiply by 3 and reduce modulo 17. We get 3° = 1 (mod 17), 31 = 3 (mod 17), 32 = 9 (mod 17),

33 = 27 = 10 (mod 17) , and so on. Thus log3 1 = 0, log3 3 = 1, log3 9 = 2, log3 10 = 3, and so on. If we

collect the data and present them in order of increasing argument, we get the required table. (Of course log3 0
does not exist.)

log3 1 = 0 log3 2 = 14 log3 3 = 1 log3 4 = 12 log3 5 = 5 log3 6 = 15 log3 7 = 11 log3 8 = 10

log3 9 = 2 log3 10 = 3 log3 11 = 7 log3 12 = 13 log3 13 = 4 log3 14 = 9 log3 15 = 6 log3 16 = 8

59. We need to prove that if the congruence x2 = a (mod p) has any solutions at all, then it has exactly
two solutions. So let us assume that s is a solution. Clearly -s is a solution as well, since (-s) 2 = s2 .

Furthermore, -s =fas (mod p), since if it were, we would have 2s = 0 (mod p), which means that p I 2s. Since

p is an odd prime, that means that p Is, so that s = 0 (mod p). Therefore a= 0 (mod p), contradicting the

conditions of the problem.

It remains to prove that there cannot be more than two incongruent solutions. Suppose that s is one

solution and that t is a second solution. We have s2 = t 2 (mod p). This means that p I s2 - t 2 , that is,

p I (s + t) (s - t) . Since p is prime, Lemma 3 in Section 4. 3 guarantees that p I s - t or p I s + t. This means that

t = s (mod p) or t = -s (mod p). Therefore any solution t must be either the first solution or its negative.
In other words, there are at most two solutions.

61. There is really almost nothing to prove here. The value (~) depends only on whether or not a is a quadratic

residue modulo p, i.e., whether or not the equivalence x2 =a (mod p) has a solution. Obviously, this depends

only on the equivalence class of a modulo p.

63. By Exercise 62 we know that (~) (~) = a(p-lJ/2 b(p-lJ/2 = (ab)(p-l)/2 = (;) (mod p). Since the only values

either side of this equivalence can take on are ±1, being congruent modulo p is the same as being equal.

65. We follow the hint. Working modulo 5, we want to solve x2 = 4. It is easy to see that there are exactly
two solutions modulo 5, namely x = 2 and x = 3. Similarly there are only the solutions x = 1 and x = 6

modulo 7. Therefore we want to find values of x modulo 5 · 7 = 35 such that x = 2 or 3 (mod 5) and x = 1

or 6 (mod 7). We can do this by applying the Chinese remainder theorem (as in Example 5) four times, for

the four combinations of these values. For example, to solve x = 2 (mod 5) and x = 1 (mod 7), we find that

m = 35, Mi = 7, M2 = 5, y 1 = 3, Y2 = 3, so x = 2 · 7 · 3 + 1 · 5 · 3 = 57 = 22 (mod 35). Doing the similar
calculation with the other three possibilities yields the other three solutions modulo 35: x = 8, x = 13, and

x = 27.

67. To compute logra (modp), we need to solve re= a (modp) fore. The brute force approach is just to

compute re mod p for e = 0, 1, 2, ... , p - 2 until we get the answer a. This requires about p iterations, each

of which can be done with O(logp) bit operations, since we need only multiply the previous value by r and

find the remainder upon division by p. At worst, we require all p iterations; on average, only half that many.

In either case, the time complexity is O(plogp), which is prohibitively large if pis, say, a 200-digit number.

Section 4.5 Applications of Congruences 137

SECTION 4.5 Applications of Congruences
The great British number theorist G. H. Hardy (1877-1947) once said, "I have never done anything 'useful.'

No discovery of mine has made, or is likely to make, directly or indirectly, for good or ill, the least difference to
the amenity of the world." He was wrong. Number theory has many applications, especially in cryptography

(see Section 4.6). In the present section we saw applications to hashing functions (important for storing

large amounts of information and being able to retrieve it efficiently), pseudorandom numbers (important for

computer simulations), and check digits (important in our technological world). Hardy would be appalled!
The exercises in this section are mostly routine.

1. We are simply asked to compute k mod 97 for each value of k. We do this by dividing the given number by

97 and taking the remainder, which can be found either by multiplying the decimal remainder by 97, or by

subtracting 97 times the quotient from k. (See the solution to Exercise 3 below for details.)

a) 034567981 mod 97 = 91 b) 183211232 mod 97 = 57

c) 220195744 mod 97 = 21 d) 987255335 mod 97 = 5

3. a) We need to compute k mod 31 in each case. A good way to do this on a calculator is as follows. Enter k
and divide by 31. The result will be a number with an integer part and a decimal fractional part. Subtract off

the integer part, leaving a decimal fraction between 0 and 1. This is the remainder expressed as a decimal.
To find out what whole number remainder that really represents, multiply by 31. The answer will be a whole

number (or nearly so-it may require rounding, say from 4.9999 or 5.0001 to 5), and that number is k mod 31.

(i) 317 mod 31 = 7 (ii) 918 mod 31 = 19 (iii) 007 mod 31 = 7

(iv) 100 mod 31 = 7 (v) 111 mod 31 = 18 (vi) 310 mod 31 = 0

b) Take the next available space, where the next space is computed by adding 1 to the space number and

pretending that 30 + 1 = 0.

5. We apply the formula with n = 0 to obtain x1 = (3 · x0 + 2) mod 13 = (3 · 1 + 2) mod 13 = 5. Then

X2 = (3 · x1 + 2) mod 13 = (3 · 5 + 2) mod 13 = 17 mod 13 = 4. Continuing in this way we have

X3 = (3 · 4 + 2) mod 13 = 1. Because this is the same as x 0 , the sequence repeats from here on out. So the
sequence is 1, 5, 4, 1, 5, 4, 1, 5, 4,

7. We compute until the sequence begins to repeat:

x1 = 3 · 2 mod 11 = 6

x2 = 3 · 6 mod 11 = 7

X3 = 3 · 7 mod 11 = 10

x4 = 3 · 10 mod 11 = 8

x5 = 3 · 8 mod 11 = 2

Since X5 = xo, the sequence repeats forever: 2, 6, 7, 10, 8, 2, 6, 7, 10, 8,

9. We follow the instructions. Because 23572 = 5555449 = 05555449, the middle four digits are 5554, so 5554
is our second pseudorandom number. Next 55542 = 30846916, so our third pseudorandom number is 8469.

Repeating the same procedure leads to the following five terms: 7239, 4031, 2489, 1951, 8064.

11. We are told to apply the formula Xn+l = x~ mod 7, starting with x0 = 2. Thus x 1 = 23 mod 7 = 1,
x2 = 13 mod 7 = 1, and our sequence never gets off the ground! The sequence generated here is 2, 1, 1, 1,

13. A correctly transmitted bit string must have an even number of 1 's. Therefore we can be sure that there is

an error in (d), but because the other three strings have an even number of 1 's, we cannot detect an error

in any of them. (Of course that doesn't mean that there is no error, because it is possible that two bits were

transmitted incorrectly, in which case the sum modulo 2 does not change.)

138 Chapter 4 Number Theory and Cryptography

15. Let d be the check digit. Then we know that 1·0+2·0+3·7+4·1+5·1+6·9+7·8+8·8+9·1+10·d = 0 (mod 11).
This simplifies to 213+10·d = 0 (mod 11). But 213 = 4 (mod 11), and 10 = -1(mod11), so this is equivalent

to 4 - d = 0 (mod 11) , or d = 4.

17. The ISBN is 0073383090. To check its validity we compute, as in Example 6, 1·0+2·0 + 3 · 7 + 4 · 3 + 5 ·
3 + 6 · 8 + 7 · 3 + 8 · 0 + 9 · 9 + 10 · 0 = 198. Because this is congruent to 0 modulo 11, the check digit was
computed correctly.

19. To determine whether an 11-digit number is a valid USPS money order identification number, we need to

verify that the sum of the first ten digits reduced modulo 9 gives the last digit.

a) 7 + 4 + 0 + 5 + 1 + 4 + 8 + 9 + 6 + 2 mod 9 = 46 mod 9 = 1 -1- 3, so this is not a valid number.

b) 8 + 8 + 3 + 8 + 2 + 0 + 1 + 3 + 4 + 4 mod 9 = 41 mod 9 = 5, which is the last digit, so this is a valid

number.

c) 5 + 6 + 1+5+2+2 + 4 + 0 + 7 + 8 mod 9 = 40 mod 9 = 4, which is the last digit, so this is a valid

number.

d) 6 + 6 + 6 + 0 + 6 + 6 + 3 + 1 + 1 + 7 mod 9 = 42 mod 9 = 6 -1- 8, so this is not a valid number.

21. In each case, we know that xn = x1 + x2 + X3 + X4 + xs + X5 + x1 + xs + Xg + X10 mod 9. (See the preamble

to Exercise 18.) This is equivalent to x 11 = x1 + x2 + X3 + x 4 + x5 + x 6 + x 7 + x 8 + x 9 + x 10 (mod 9), with
0 ::; x 11 :S 8. Therefore we will get an equation modulo 9 involving the unknown Q for each of these valid
postal money order identification numbers.

a) 8 = 4 + 9 + 3 + 2 + 1 + 2 + Q + 0 + 6 + 8 (mod 9), which is equivalent to 8 = Q + 35 = Q + 8 (mod 9).

Therefore Q = 0 (mod 9). There are two single-digit numbers Q that makes this true: Q = 0 and Q = 9, so

it is impossible to know for sure what the smudged digit was.

b) 8 = 8 + 5 + 0 + Q + 9 + 1+0 + 3 + 8 + 5 (mod 9), which is equivalent to 8 = Q + 39 = Q + 3 (mod 9).
The only single-digit number Q that makes this true is Q = 5, so the smudged digit must have been a 5.

c) 4 = 2 + Q + 9 + 4 + 1+0 + 0 + 7 + 7 + 3 (mod 9), which is equivalent to 4 = Q + 33 = Q + 6 (mod 9).

The only single-digit number Q that makes this true is Q = 7, so the smudged digit must have been a 7.

d) 1=6+6 + 6 + 8 + 7 + Q + 0 + 3 + 2 + 0 (mod 9), which is equivalent to 1=Q+38 = Q + 2 (mod 9).
The only single-digit number Q that makes this true is Q = 8, so the smudged digit must have been an 8.

23. Because the first ten digits are added, any transposition error involving them will go undetected-the sum of

the first ten digits will be the same for the transposed number as it is for the correct number. Suppose the

last digit is transposed with another digit; without loss of generality, we can assume it's the tenth digit and

that x 10 -1- x 11 . Then the correct equation will be

X11 = X1 + X2 + X3 + X4 + X5 + X5 + X7 + Xs + Xg + X10 (mod 9)

but the equation resulting from the error will read

X10 = X1 + X2 + X3 + X4 + X5 + X5 + X7 + Xs + Xg + X11 (mod 9) .

Subtracting these two equations, we see that the erroneous equation will be true if and only if x11 - x10 =
x 10 - x11 (mod 9). This is equivalent to 2x11 = 2x10 (mod 9), which, because 2 is relatively prime to 9, is

equivalent to x 11 = x 10 (mod 9), which is false. This tells us that the check equation will fail. Therefore we

conclude that transposition errors involving the eleventh digits are detected.

25. From Example 5. we know that a valid UPC code must satisfy the equation

Section 4.5 Applications of Congruences 139

Therefore in each case we simply need to compute the left-hand side of this equation modulo 10 and see
whether or not we get 0 as the answer.

a) 3 · 0 + 3 + 3 · 6 + 0 + 3 · 0 + 0 + 3 · 2 + 9 + 3 · 1+4 + 3 · 5 + 2 = 60 = 0 (mod 10), so this is a valid code.

b) 3 · 0 + 1 + 3 · 2 + 3 + 3 · 4 + 5 + 3 · 6 + 7 + 3 · 8 + 9 + 3 · 0 + 3 = 88 "!- 0 (mod 10) , so this is not a valid code.

c) 3 · 7 + 8 + 3 · 2 + 4 + 3 · 2 + 1+3 · 8 + 4 + 3 · 3 + 0 + 3 · 1+4 = 90 = 0 (mod 10), so this is a valid code.

d) 3 · 7 + 2 + 3 · 6 + 4 + 3 · 1+2+3·1+7 + 3 · 5 + 4 + 3 · 2 + 5 = 90 = 0 (mod 10), so this is a valid code.

27. The digits with even subscripts appear in the formula with coefficient 1, whereas those with odd subscripts

appear with coefficient 3. Therefore if two digits whose positions have the same parity (both odd or both

even) are switched, then th~ sum will be unchanged and such an error cannot be detected. If two digits whose
parities are different are transposed, say an x in an odd position and a y in an even position, then the new

sum will differ from the old sum by (x + 3y) - (3x + y), which equals 2(y- x). As long as the two transposed

digits do not differ by 5, the sum will therefore be different modulo 10; if they do differ by 5, then the

sum will be the same modulo 10. We conclude that transposition errors will be detected if and only if the
transposed digits are an odd number of positions apart (in particular transposing neighboring digits) and do
not differ by 5 .

29. In each case we need to compute a 1a 2 ... al4 mod 7 and see if we get a 15 . This may be inconvenient on a

calculator with only 12 digits of precision, but one can always divide it out by hand (or, better, use computer

algebra software).

a) 10133334178901 = 7 · 1447619168414 + 3. Therefore 10133334178901 mod 7 = 3 = a 15 , so this is a valid

airline ticket number. (In Maple we could just type 10133334178901 mod 7 and get the response 3.)

b) 00786234277044 mod 7· = 6 -/=- 5 = a 15 , so this is not a valid number.

c) 11327343888253 mod 7 = 1 = a 15 , so this is a valid number.

d) 00012234732287 mod 7 = 1 = a 15 , so this is a valid number.

31. Let's solve a more general problem by ignoring the word "consecutive." First we look at the case in which the

transposition does not involve the check digit itself. Suppose the erroneous number formed by the first 14 digits

occurs when a, is interchanged with aJ , where 1 ~ i < j ~ 14. Because of our decimal place-value numeration

system, before the switch, a, was contributing a, -1014-z to the value of the number, and aJ was contributing

aJ · 1014-J. Therefore this change has increased the 14-digit number by (aJ -a,)1014-' +(a, -aJ)1014-J, which

equals (aJ - a,)(1014-z - 1014-J). In order for this to still check, this last expression must be equivalent to 0

modulo 7. Obviously this will happen if ai and aJ differ by 7, but it will also happen if (1014 - 1 -1014-J) is a

multiple of 7. A bit of calculation shows that this will happen if and only if j - i = 6 or 12. Thus we cannot

detect the error if the columns in which the transposition occurs are 6 or 12 apart or the transposed digits

differ by 7. Finally, if the digit a 15 is transposed with the digit a,, where 1 ~ i ~ 14, then a 1 a2 ••• a 14 mod 7
has gone up by (a 15 -a,)1014-z and the check digit has gone up by a, - a 15 , so we will not be able to detect this

error ifand only if (a15 -a,)1014
-i =a, -a15 (mod 7), which is equivalent to (a15 -a,)(1014-'+ 1) = 0 (mod 7).

Because 1014
-'' + 1 = 0 (mod 7) if and only if i = 5 or 11, we conclude that we cannot detect the transposition

error if it interchanges the check digit with a5 or a 11 or interchanges it with a digit differing from it by 7.

(Of course, the check digit must be 0 through 6, so an error that puts a 7, 8, or 9 in the last position can
also be detected.)

Because transposing consecutive digits is not transposing digits whose positions differ by the quantities

mentioned above, we can detect all transposition errors of consecutive digits unless the digits differ by 7.

33. In each case we will compute 3d1 +4d2 + 5d3 + 6d4 + 7d5 + 8d6 + 9d7 mod 11. If this matches the digit given
for ds, then the ISSN is valid, and conversely.

140 Chapter 4 Number Theory and Cryptography

a) 3 · 1 + 4 · 0 + 5 · 5 + 6 · 9 + 7 · 1 + 8 · 0 + 9 · 2 mod 11 = 107 mod 11 = 8. Because ds = 7 =/= 8, this number

is not valid.

b) 3 · 0 + 4 · 0 + 5 · 0 + 6 · 2 + 7 · 9 + 8 · 8 + 9 · 9 mod 11 = 220 mod 11 = 0. Because d8 = 0, this number is
valid.

c) 3 · 1+4 · 5 + 5 · 3 + 6 · 0 + 7 · 8 + 8 · 6 + 9 · 6 mod 11=196 mod 11 = 9. Because d8 = 9, this number is

valid.

d) 3 · 1+4 · 0 + 5 · 0 + 6 · 7 + 7 · 1 + 8 · 2 + 9 · 0 mod 11 = 68 mod 11 = 2. Because d8 is "X" (representing
10 modulo 11), this number is not valid.

35. By subtracting d8 from both sides and noting that -1 = 10 (mod 11) , we see that the checking congruence is

equivalent to 3d1 +4d2 + 5d3 + 6d4 + 7 d5 + 8d5 + 9d1 + lOds = 0 (mod 11) . It is now easy to see that transposing

adjacent digits x and y (where x is on the left) causes the left-hand side to increase by x and decrease by y,

for a net change of x - y. Because x =/'. y (mod 11) , the congruence will no longer hold. Therefore errors of
this type are always detected.

SECTION 4.6 Cryptography

In addition to exercises about the topics covered in this section, this exercise set introduces the Vigenere cipher
(Exercises 18-22) and a protocol for key exchange (Exercise 33). There is a nice website for encoding and

decoding with the affine cipher (far any function of the farm f(p) = ap + b), which you can use to check your

answers: www.shodor.org/interactivate/activities/CaesarCipher/. A website for the Vigenere cipher

can be found here: isl ab. oregonstate. edu/koc/ ece575/02Proj ect/Mun+Lee/VigenereCipher. html

1. a) We need to replace each letter by the letter three places later in the alphabet. Thus D becomes G, 0
becomes R, and so on. The resulting message is GR QRW SDVV JR.

b) We need to replace each letter by the letter 13 places later in the alphabet. Thus D becomes Q, 0 becomes

B (we cycle, with A following Z), and so on. The resulting message is QB ABG CNFF TB.

c) This one is a little harder, so it is probably easiest to work with the numbers. For D we have p = 3 because
D is the fourth letter of the alphabet. Then 3 · 3 + 7 mod 26 = 16, so the encrypted letter is the 17th letter,

or Q (remember that we start the sequence at 0). Our original message has the following numerical values:

3-14 13-14-19 15-0-18-18 6-14. Multiplying each of these numbers by 3, adding 7, and reducing modulo 26

gives us 16-23 20-23-12 0-7-9-9 25-23. Translating back into letters we have QX UXM AHJJ ZX.

3. In each case, we translate the letters to numbers from 0 to 25, then apply the function, then translate back. (See

the solution for Exercise le above for details.) In each case, the numerical message is 22-0-19-2-7 24-14-20-17

18-19-4-15.

a) Adding 14 to each number modulo 26 yields 10-14-7-16-21 12-2-8-5 6-7-18-3. Translating back into letters

yields KOHQV MCIF GHSD.

b) Multiplying each number by 14, adding 21, and reducing modulo 26 yields 17-21-1-23-15 19-9-15-25

13-1-25-23. Translating back into letters yields RVBXP TJPZ NBZX.

c) Multiplying each number by - 7, adding 1, and reducing modulo 26 yields 3-1-24-13-4 15-7-17-12 5-24-25-0.

Translating back into letters yields DBYNE PHRM FYZA.

5. a) We need to undo the encryption operation, which was to choose the letter that occurred ten places later in

the alphabet. Therefore we need to go backwards 10 places (or, what amounts to the same thing, forward 16

places). For example, the C decodes as S. Doing this for each letter, as in Exercise 1, gives us SURRENDER

NOW.

b) BE MY FRIEND c) TIME FOR FUN

Section 4.6 Cryptography 141

7. We need to play detective. First note that the two-letter word DY occurs twice. Because this was a shift cipher,

we know that the first letter of this word occurs five places beyond the second letter in the alphabet. One of

those letters has to be a vowel. This makes it very likely that the word is either UP or TO, corresponding to

k = 9 or k = 10, respectively. Since TO is a more common word, let us assume k = 10. To decrypt, we shift
each letter in the encrypted message backward 10 places (or forward 16 places) in the alphabet, obtaining
TO SLEEP PERCHANCE TO DREAM (from Hamlet).

9. Following the same strategy as in Exercise 7, we try to figure out k from the fact that MW is a two-letter

word in the encrypted text. What fits best is IS, with k = 4. If we apply that to the three-letter word, we get

ANY, which seems quite promising. We now decode the entire message: ANY SUFFICIENTLY ADVANCED
TECHNOLOGY IS INDISTINGUISHABLE FROM MAGIC.

11. We want to solve the congruence c = 15p + 13 (mod 26) for p. To do that we will need an inverse of

15 modulo 26, which we can obtain using the Euclidean algorithm or by trial and error. It is 7, because

7 · 15 = 105 = 4 · 26 + 1. Therefore we have p = 7(c - 13) mod 26 = 7c - 91 mod 26 = 7c + 13 mod 26.

13. Because the most common letters are E and T, in that order, and the numerical values of E, T, Z, and J are

4, 19, 25, and 9, respectively, we will assume that f(4) = 25 and f(19) = 9. This means that 4a + b = 25

and 19a + b = 9, where we work modulo 26, of course. Subtracting the two equations gives 15a = 10, which
simplifies to 3a = 2 (because 5 is not a factor of 26, we can divide both sides by 5). We can find an inverse

of 3 modulo 26 using the Euclidean algorithm or by trial and error. It is 9, because 3 · 9 = 27 = 26 + 1.

Therefore a = 9 · 2 = 18. Plugging this into 4a + b = 25 yields b = 25 - 4a = 25 - 72 = 5. We therefore guess

that the encryption function is f(p) = 18p + 5 mod 26. As a check, we see that f(4) = 25 and f(19) = 9.

15. We permute each block of four by undoing the permutation O". Because 0'(1) = 3, we put the third letter

first; because 0'(2) = 1, we put the first letter second; and so on. This gives us BEWA REOF MART IANS,

presumably meant to be BEWARE OF MARTIANS.

17. Presumably the message was translated letter by letter, such as by a shift cipher or affine cipher. (Other,

nonlinear, bijections on Z26 are also possible.)

19. The numerical version of the encrypted text is 14-8-10-24-22-21-7-1-23. If we subtract the values for the

key HOTHOTHOT, namely 7-14-19-7-14-19-7-14-19 and reduce modulo 26, we obtain 7-20-17-17-8-2-0-13-4,

which translates to HURRICANE.

21. If l is the distance between the beginnings of the string that occurs several times, then it may be likely that

the length of the key string is a factor of l. Thus if we have several such values of l, we can find their greatest

common divisor and assume that the length of the key string is a factor of this gcd.

23. Suppose that we know n = pq and (p - 1) (q - 1), and we wish to find p and q. Here is how we do so.

Expanding (p - 1)(q - 1) algebraically we obtain pq - p - q + 1 = n - p - q + 1. Thus we know the value

of n - p - q + 1, and so we can easily calculate the value of p + q (since we know n). But we also know

the value of pq, namely n. This gives us two simultaneous equations in two unknowns, and we can solve

them using the quadratic formula. Here is an example. Suppose that we want to factor n = 341, and we

are told that (p - 1) (q - 1) = 300. We want to find p and q. Following the argument just outlined, we

know that p + q = 341 + 1 - 300 = 42. Plugging q = 42 - p into pq = 341 we obtain p(42 - p) = 341,

or p2 - 42p + 341 = 0. The quadratic formula then tells us that p = (42 + .J 422 - 4 · 341) /2 = 31, and so

the factors are 31 and 42 - 31 = 11. Note that absolutely no trial divisions were involved here-it was just

straight calculation.

142 Chapter 4 Number Theory and Cryptography

25. First we translate UPLOAD into numbers: 2015 1114 0003. For each of these numbers, which we might call M,

we need to compute C =Me mod n = M 17 mod 3233. Note that n = 53 · 61 = 3233 and that gcd(e, (p -
1) (q - 1)) = gcd(l 7, 52 · 60) = 1, as it should be. A computational aid tells us that 201517 mod 3233 = 2545,

111417 mod 3233 = 2757, and 000317 mod 3233 = 1211. Therefore the encrypted message is 2545 2757

1211.

27. This problem requires a great amount of calculation. Ideally, one should do it using a computer algebra
package, such as Mathematica or Maple. Let us follow the procedure outlined in Example 9. It was computed
there that the inverse of e = 13 modulo n = 43·59 is d = 937. We need to compute 0667937 mod 2537 = 1808,

194 7937 mod 2537 = 1121, and 0671937 mod 2537 = 0417. (These calculations can in principle be done with

a calculator, using the fast modular exponentiation algorithm, but it would probably take the better part of

an hour and be prone to transcription errors.) Thus the original message is 1808 1121 0417, which is easily
translated into letters as SILVER.

29. We follow the steps given in the text, with p = 23, a= 5, k1 = 8, and k2 = 5. Using Maple, we verify that

5 is a primitive root modulo 23, by noticing that 5k as k runs from 0 to 21 produce distinct values (and of

course 522 mod 23 = 1). We find that 58 mod 23 = 16. So in Step (2), Alice sends 16 to Bob. Similarly, in

Step (3), Bob sends 55 mod 23 = 20 to Alice. In Step (4) Alice computes 208 mod 23 = 6, and in Step (5)
Bob computes 165 mod 23 = 6. These are the same, of course, and thus 6 is the shared key.

31. See Example 10 for the procedure. First Alice translates her message into numbers: 1804 1111 0421 0417

2419 0708 1306. She then applies her decryption transformation sending each block x to x 1183 mod 2867.

(We should verify with Maple that 7 · 1183 mod (60 · 46) = 1.) Using Maple, we see that the blocks become

18041183 mod 2867 = 2186, 11111183 mod 2867 = 2087, 0421 1183 mod 2867 = 1279, 04171183 mod 2867 =
1251, 24191183 mod 2867 = 0326, 07081183 mod 2867 = 0816, and 13061183 mod 2867 = 1948. If her friends

apply Alice's encryption transformation to 2186 2087 1279 1251 0326 0816 1948, they will obtain the numbers

of her original message.

33. Cathy knows the shared key kAlice,Bob, but because she transmitted it to Alice encrypted, no one else knows

it at the time Alice receives it. Alice can decrypt the first part of Cathy's message to find out what the key

is. When Alice sends the second part of Cathy's message, which consists of kAlice.Bob encrypted with Bob's

key, on to Bob, Bob can decrypt it to find the shared key, but it remains hidden from everyone else.

GUIDE TO REVIEW QUESTIONS FOR CHAPTER 4

1. Dividing 210 by 17 gives a quotient of 12 and a remainder of 6, which are the respective requested values.

2. a) 7 J a - b b) 0 = -7; -1 = -8; 3 = 17 = -11

c) (10a + 13) - (-4b + 20) = 3(a - b) + 7(a + b - 1); note that 7 divides both terms

3. See Theorem 5 in Section 4.1.

4. See Example 5 in Section 4.2.

5. Octal: 154533; hexadecimal: D95B

6. 1110 1000 0110 and 1010 0000 1110 1011

7. See p. 258.

8. a) See Example 4 in Section 4.3 and the preceding paragraph on p. 258. b) 11 2 . 23 . 29

312

CHAPTER9
Relations

Chapter 9 Relations

SECTION 9.1 Relations and Their Properties

This chapter is one of the most important in the book. Many structures in mathematics and computer science

are formulated in terms of relations. Not only is the terminology worth learning, but the experience to be
gained by working with various relations will prepare the student for the more advanced structures that he or

she is sure to encounter in future work.

This section gives the basic terminology, especially the important notions of reflexivity, symmetry, an

tisymmetry, and transitivity. If we are given a relation as a set of ordered pairs, then reflexivity is easy to
check far: we make sure that each element is related to itself. Symmetry is also fairly easy to test for: we
make sure that no pair (a, b) is in the relation without its opposite (b, a) being present as well. To check for
antisymmetry we make sure that no pair (a, b) with a f- b and its opposite are both in the relation. In other
words, at most one of (a, b) and (b, a) is in the relation if a f- b. Transitivity is much harder to verify, since

there are many triples of elements to check. A common mistake to try to avoid is forgetting that a transitive

relation that has pairs (a, b) and (b, a) must also include (a, a) and (b, b).

More importantly, we can be given a relation as a rule as to when elements are related. Exercises 4-
7 are particularly useful in helping to understand the notions of reflexivity, symmetry, antisymmetry, and

transitivity for relations given in this manner. Here you have to ask yourself the appropriate questions in

order to determine whether the properties hold. Is every element related to itself? If so, the relation is

reflexive. Are the roles of the variables in the definition interchangeable? If so, then the relation is symmetric.
Does the definition preclude two different elements from each being related to the other? If so, then the

relation is antisymmetric. Does the fact that one element is related to a second, which is in turn related to a

third, mean that the first is related to the third? If so, then the relation is transitive.

In general, try to think of a relation in these two ways at the same time: as a set of ordered pairs and as

a propositional function describing a relationship among objects.

1. In each case, we need to find all the pairs (a, b) with a E A and b E B such that the condition is satisfied.

This is straightforward.

a) {(0,0), (1, 1), (2,2), (3,3)} b) {(1,3),(2,2),(3, 1), (4,0)}

c) {(1,0), (2,0), (2, 1),(3,0), (3,1),(3,2),(4,0), (4, 1), (4,2), (4,3)}

d) Recall that a I b means that b is a multiple of a (a is not allowed to be 0). Thus the answer is

{ (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 2), (3, 0), (3, 3), (4, O)}.

e) We need to look for pairs whose greatest common divisor is 1-in other words, pairs that are relatively

prime. Thus the answer is { (0, 1), (1, 0), (1, 1), (1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2), (4, 1), (4, 3)}.

f) There are not very many pairs of numbers (by definition only positive integers are considered) whose least

common multiple is 2: only 1 and 2, and 2 and 2. Thus the answer is { (1, 2), (2, 1), (2, 2)}.

3. a) This relation is not reflexive, since it does not include, for instance (1, 1). It is not symmetric, since it

includes, for instance, (2, 4) but not (4, 2). It is not antisymmetric since it includes both (2, 3) and (3, 2),

but 2 f- 3. It is transitive. To see this we have to check that whenever it includes (a,b) and (b,c), then it

Section 9.1 Relations and Their Properties 313

also includes (a, c). We can ignore the element 1 since it never appears. If (a, b) is in this relation, then by

inspection we see that a must be either 2 or 3. But (2, c) and (3, c) are in the relation for all c -:/=- 1; thus

(a, c) has to be in this relation whenever (a, b) and (b, c) are. This proves that the relation is transitive. Note

that it is very tedious to prove transitivity for an arbitrary list of ordered pairs.

b) This relation is reflexive, since all the pairs (1, 1), (2, 2), (3, 3), and (4, 4) are in it. It is clearly symmetric,
the only nontrivial case to note being that both (1, 2) and (2, 1) are in the relation. It is not antisymmetric

because both (1, 2) and (2, 1) are in the relation. It is transitive; the only nontrivial cases to note are that

since both (1, 2) and (2, 1) are in the relation, we need to have (and do have) both (1, 1) and (2, 2) included

as well.

c) This relation clearly is not reflexive and clearly is symmetric. It is not antisymmetric since both (2, 4) and

(4,2) are in the relation. It is not transitive, since although (2,4) and (4,2) are in the relation, (2,2) is not.

d) This relation is clearly not reflexive. It is not symmetric, since, for instance, (1, 2) is included but (2, 1)

is not. It is antisymmetric, since there are no cases of (a, b) and (b, a) both being in the relation. It is not

transitive, since although (1, 2) and (2, 3) are in the relation, (1, 3) is not.

e) This relation is clearly reflexive and symmetric. It is trivially antisymmetric since there are no pairs (a, b)
in the relation with a -:/=- b. It is trivially transitive, since the only time the hypothesis (a, b) E R /\ (b, c) E R

is met is when a= b = c.

f) This relation is clearly not reflexive. The presence of (1,4) and absence of (4, 1) shows that it is not

symmetric. The presence of both (1, 3) and (3, 1) shows that it is not antisymmetric. It is not transitive;

both (2, 3) and (3, 1) are in the relation, but (2, 1) is not, for instance.

5. Recall the definitions: R is reflexive if (a,a) ER for all a; R is symmetric if (a,b) ER always implies

(b, a) E R; R is antisymmetric if (a, b) E R and (b, a) E R always implies a = b; and R is transitive if
(a, b) ER and (b, c) ER always implies (a, c) ER.

a) It is tautological that everyone who has visited Web page a has also visited Web page a, so R is reflexive.

It is not symmetric, because there surely are Web pages a and b such that the set of people who visited a is

a proper subset of the set of people who visited b (for example, the only link to page a may be on page b).

Whether R is antisymmetric in truth is hard to say, but it is certainly conceivable that there are two different

Web pages a and b that have had exactly the same set of visitors. In this case, (a, b) E R and (b, a) E R,
so R is not antisymmetric. Finally, R is transitive: if everyone who has visited a has also visited b, and

everyone who has visited b has also visited c, then clearly everyone who has visited a has also visited c.

b) This relation is not reflexive, because for any page a that has links on it, (a, a) tJ_ R. The definition

of R is symmetric in its very statement, so R is clearly symmetric. Also R is certainly not antisymmetric,

because there surely are two different Web pages a and b out there that have no common links found on

them. Finally, R is not transitive, because the two Web pages just mentioned, assuming they have links at

all, give an example of the failure of the definition: (a, b) ER and (b, a) ER, but (a, a) tJ_ R.

c) This relation is not reflexive, because for any page a that has no links on it, (a, a) tJ_ R. The definition

of R is symmetric in its very statement, so R is clearly symmetric. Also R is certainly not antisymmetric,

because there surely are two different Web pages a and b out there that have a common link found on them.
Finally, R is surely not transitive. Page a might have only one link (say to this textbook), page c might have

only one link different from this (say to the Erdos Number Project), and page b may have only the two links

mentioned in this sentence. Then (a, b) ER and (b, c) ER, but (a, c) tJ_ R.

d) This relation is probably not reflexive, because there probably exist Web pages out there with no links at

all to them (for example, when they are in the process of being written and tested); for any such page a we

have (a, a) tJ_ R. The definition of R is symmetric in its very statement, so R is clearly symmetric. Also R
is certainly not antisymmetric, because there surely are two different Web pages a and b out there that are

referenced by some third page. Finally, R is surely not transitive. Page a might have only one page that links

314 Chapter 9 Relations

to it, page c might also have only one page, different from this, that links to it, and page b may be cited on

both of these two pages. Then there would be no page that includes links to both pages a and c, so we have
(a, b) ER and (b, c) ER, but (a, c) tj. R.

7. a) This relation is not reflexive since it is not the case that 1 -=f:. 1, for instance. It is symmetric: if x -=f:. y,

then of course y -=/:- x. It is not antisymmetric, since, for instance, 1 -=/:- 2 and also 2 -=/:- 1. It is not transitive,
since 1 of. 2 and 2 of. 1, for instance, but it is not the case that 1 of. 1.

b) This relation is not reflexive, since (0, 0) is not included. It is symmetric, because the commutative property

of multiplication tells us that xy = yx, so that one of these quantities is greater than or equal to 1 if and

only if the other is. It is not antisymmetric, since, for instance, (2, 3) and (3, 2) are both included. It is

transitive. To see this, note that the relation holds between x and y if and only if either x and y are both

positive or x and y are both negative. So assume that (a, b) and (b, c) are both in the relation. There are
two cases, nearly identical. If a is positive, then so is b, since (a, b) E R; therefore so is c, since (b, c) E R,

and hence (a, c) E R. If a is negative, then so is b, since (a, b) E R; therefore so is c, since (b, c) ER, and

hence (a, c) ER.

c) This relation is not reflexive, since (1, 1) is not included, for instance. It is symmetric; the equation
x = y - 1 is equivalent to the equation y = x + 1, which is the same as the equation x = y + 1 with the roles
of x and y reversed. (A more formal proof of symmetry would be by cases. If x is related to y then either

x = y + 1 or x = y - 1 . In the former case, y = x - 1 , so y is related to x; in the latter case y = x + 1 , so

y is related to x .) It is not antisymmetric, since, for instance, both (1, 2) and (2, 1) are in the relation. It is

not transitive, since, for instance, although both (1, 2) and (2, 1) are in the relation, (1, 1) is not.

d) Recall that x = y (mod 7) means that x - y is a multiple of 7, i.e., that x - y = 7t for some integer t.
This relation is reflexive, since x - x = 7 · 0 for all x. It is symmetric, since if x = y (mod 7), then x - y = 7t
for some t; therefore y - x = 7(-t), so y = x (mod 7). It is not antisymmetric, since, for instance, we have

both 2 = 9 and 9 = 2 (mod 7). It is transitive. Suppose x = y and y = z (mod 7). This means that

x - y = 7 s and y - z = 7t for some integers s and t. The trick is to add these two equations and note that

the y disappears; we get x - z = 7 s + 7t = 7(s + t). By definition, this means that x = z (mod 7) , as desired.

e) Every number is a multiple of itself (namely 1 times itself), so this relation is reflexive. (There is one bit

of controversy here; we assume that 0 is to be considered a multiple of 0, even though we do not consider

that 0 is a divisor of 0.) It is clearly not symmetric, since, for instance, 6 is a multiple of 2, but 2 is not a

multiple of 6. The relation is not antisymmetric either; we have that 2 is a multiple of -2, for instance, and

-2 is a multiple of 2, but 2 of. -2. The relation is transitive, however. If x is a multiple of y (say x = ty),

and y is a multiple of z (say y = sz), then we have x = t(sz) = (ts)z, so we know that x is a multiple of z.

f) This relation is reflexive, since a and a are either both negative or both nonnegative. It is clearly symmetric

from its form. It is not antisymmetric, since 5 is related to 6 and 6 is related to 5, but 5 -=f:. 6. Finally, it is

transitive, since if a is related to b and b is related to c, then all three of them must be negative, or all three
must be nonnegative.

g) This relation is not reflexive, since, for instance, 17 of. 172
. It is not symmetric, since although 289 = 172 , it

is not the case that 17 = 2892 . To see whether it is antisymmetric, suppose that we have both (x, y) and (y, x)
in the relation. Then x = y2 and y = x2 . To solve this system of equations, plug the second into the first, to

obtain x = x 4 , which is equivalent to x-x4 = 0. The left-hand side factors as x(l-x3) = x(l-x)(l+x+x2),

so the solutions for x are 0 and 1 (and a pair of irrelevant complex numbers). The corresponding solutions

for y are therefore also 0 and 1. Thus the only time we have both x = y2 and y = x2 is when x = y; this

means that the relation is antisymmetric. It is not transitive, since, for example, 16 = 42 and 4 = 22 , but

16 # 22
.

h) This relation is not reflexive, since, for instance, 17 'i. 172 . It is not symmetric, since although 289 :::=: 172 ,

it is not the case that 17 :::=: 2892 . To see whether it is antisymmetric, we assume that both (x, y) and (y, x)

Section 9.1 Relations and Their Properties 315

are in the relation. Then x 2: y2 and y 2: x2 . Since both sides of the second inequality are nonnegative, we

can square both sides to get y2 2: x4 . Combining this with the first inequality, we have x 2: x4 , which is

equivalent to x - x 4 2: 0. The left-hand side factors as x(l - x 3) = x(l - x)(1 + x + x 2). The last factor is

always positive, so we can divide the original inequality by it to obtain the equivalent inequality x(l - x) 2: 0.

Now if x > 1 or x < 0, then the factors have different signs, so the inequality does not hold. Thus the only
solutions are x = 0 and x = 1. The corresponding solutions for y are therefore also 0 and 1. Thus the only
time we have both x 2: y 2 and y 2: x 2 is when x = y; this means that the relation is antisymmetric. It is

transitive. Suppose x 2: y2 and y 2: z2 . Again the second inequality implies that both sides are nonnegative,

so we can square both sides to obtain y2 2: z4 . Combining these inequalities gives x 2: z4 . Now we claim that

it is always the case that z4 2: z 2
; if so, then we combine this fact with the last inequality to obtain x 2: z2 ,

so x is related to z. To verify the claim, note that since we are working with integers, it is always the case

that z 2 2: lzl (equality for z = 0 and z = 1, strict inequality for other z). Squaring both sides gives the

desired inequality.

9. Each of the properties is a universally quantified statement. Because the domain is empty, each of them is

vacuously true.

11. The relations in parts (a), (b), and (e) all have at least one pair of the form (x,x) in them, so they are not

irreflexive. The relations in parts (c), (d), and (f) do not, so they are irreflexive.

13. According to the preamble to Exercise 11, an irreflexive relation is one for which a is never related to itself;

i.e., \fa((a,a) ~ R).

a) Since we saw in Exercise 5a that \fa((a, a) ER), clearly R is not irreflexive.

b) Since there are probably pages a with no links at all, and for such pages it is true that there are no common

links found on both page a and page a, this relation is probably not irreflexive.

c) This relation is not irreflexive, because for any page a that has links on it, (a, a) ER.

d) This relation is not irreflexive, because for any page a that has links on it that are ever cited, (a, a) E R.

15. The relation in Exercise 3a is neither reflexive nor irreflexive. It contains some of the pairs (a, a) but not all

of them.

17. Of course many answers are possible. The empty relation is always irreflexive (x is never related to y). A less

trivial example would be (a, b) E R if and only if a is taller than b. Since nobody is taller than him/herself,

we always have (a, a) ~ R.

19. The relation in part (a) is asymmetric, since if a is taller than b, then certainly b cannot be taller than a.

The relation in part (b) is not asymmetric, since there are many instances of a and b born on the same day

(both cases in which a = b and cases in which a -/=- b), and in all such cases, it is also the case that b and a
were born on the same day. The relations in part (c) and part (d) are just like that in part (b), so they, too,

are not asymmetric.

21. According to the preamble to Exercise 18, an asymmetric relation is one for which (a, b) E R and (b, a) E R
can never hold simultaneously, even if a = b. Thus R is asymmetric if and only if R is antisymmetric and

also irreflexive.

a) not asymmetric since (-1, 1) E R and (1, -1) E R

b) not asymmetric since (-1, 1) E R and (1, -1) E R

c) not asymmetric since (-1, 1) ER and (1, -1) ER

d) not asymmetric since (0, 0) E R

316 Chapter 9 Relations

e) not asymmetric since (2, 1) ER and (1, 2) ER

f) not asymmetric since (0, 1) ER and (1, 0) ER

g) not asymmetric since (1, 1) ER

h) not asymmetric since (2, 1) ER and (1, 2) ER

23. According to the preamble to Exercise 18, an asymmetric relation is one for which (a, b) ER and (b, a) E R
can never hold simultaneously. In symbols, this is simply Va Vb..,((a, b) E R /\ (b, a) E R). Alternatively,

VaVb ((a, b) ER---> (b, a) tj. R).

25. There are mn elements of the set A x B, if A is a set with m elements and B is a set with n elements.

A relation from A to B is a subset of A x B. Thus the question asks for the number of subsets of the set

A x B, which has mn elements. By the product rule, it is 2mn.

27. a) By definition the answer is { (b, a) I a divides b}, which, by changing the names of the dummy variables,

can also be written { (a, b) I b divides a } . (The universal set is still the set of positive integers.)

b) By definition the answer is { (a, b) J a does not divide b } . (The universal set is still the set of positive

integers.)

29. The inverse relation is just the graph of the inverse function. Somewhat more formally, we have R- 1 =

{ (f(a), a) I a EA} = { (b, 1-1 (b)) I b EB}, since we can index this collection just as easily by elements of
B as by elements of A (using the correspondence b = f(a)).

31. This exercise is just a matter of the definitions of the set operations.

a) the set of pairs (a, b) where a is required to read b in a course or has read b

b) the set of pairs (a, b) where a is required to read b in a course and has read b

c) the set of pairs (a, b) where a is required to read b in a course or has read b, but not both; equivalently,

the set of pairs (a, b) where a is required to read b in a course but has not done so, or has read b although

not required to do so in a course

d) the set of pairs (a, b) where a is required to read b in a course but has not done so

e) the set of pairs (a, b) where a has read b although not required to do so in a course

33. To find So R we want to find the set of pairs (a, c) such that for some person b, a is a parent of b, and b
is a sibling of c. Since brothers and sisters have the same parents, this means that a is also the parent of c.

Thus S o R is contained in the relation R. More specifically, (a, c) E S o R if and only if a is the parent of c,

and c has a sibling (who is necessarily also a child of a). To find Ro S we want to find the set of pairs (a, c)

such that for some person b, a is a sibling of b, and b is a parent of c. This is the same as the condition that

a is the aunt or uncle of c (by blood, not marriage).

35. a) The union of two relations is the union of these sets. Thus R2 U R4 holds between two real numbers if R2

holds or R4 holds (or both, it goes without saying). Since it is always true that a ::;: b or b ::;: a, R2 U R4 is

all of R 2
, i.e., the relation that always holds.

b) For (a, b) to be in R3 U R6 , we must have a < b or a =/= b. Since this happens precisely when a =/= b, we

see that the answer is R6 .

c) The intersection of two relations is the intersection of these sets. Thus R3 n R6 holds between two real

numbers if R3 holds and R6 holds as well. Thus for (a, b) to be in R3 n R6, we must have a < b and a =/= b.
Since this happens precisely when a < b, we see that the answer is R3 .

d) For (a, b) to be in R4 n R6 , we must have a::;: b and a=/= b. Since this happens precisely when a< b, we

see that the answer is R3 .

Section 9.1 Relations and Their Properties 317

e) Recall that R 3 - R6 = R3 n R6. But R6 = R5, so we are asked for R3 n R5. It is impossible for a < b

and a= b to hold at the same time, so the answer is 0, i.e., the relation that never holds.

f) Reasoning as in part (e), we want R6 n R3 = R6 n R2, which is clearly Ri (since a =f. b and a :::: b precisely

when a> b).
g) Recall that R2 EB R6 = (R2 n R5) u (R6 n R2). We see that R2 n R6 = R2 n R5 = R5, and R6 n R2 =
R6 n R 3 = R3 . Thus our answer is R5 U R3 = R4 .

h) Recall that R3 EB Rs = (R3 n Rs) U (Rs n R3). We see that R3 n Rs = R3 n R6 = R3 , and Rs n R3 =
Rs n R2 = Rs . Thus our answer is R3 U R5 = R4 .

37. Recall that the composition of two relations all defined on a common set is defined as follows: (a, c) E S o R

if and only if there is some element b such that (a, b) E R and (b, c) E S. We have to apply this in each case.

a) For (a, c) to be in R2 o Ri, we must find an element b such that (a, b) E R 1 and (b, c) E R2. This means

that a> b and b ~ c. Clearly this can be done if and only if a> c to begin with. But that is precisely the

statement that (a, c) E R 1 . Therefore we have R2 o R 1 = R 1 .

b) For (a, c) to be in R2 o R 2, we must find an element b such that (a, b) E R 2 and (b, c) E R 2 . This means

that a :::: b and b :::: c. Clearly this can be done if and only if a :::: c to begin with. But that is precisely the

statement that (a, c) E R2. Therefore we have R 2 o R2 = R2. In particular, this shows that R2 is transitive.

c) For (a, c) to be in R3 o R5 , we must find an element b such that (a, b) E R5 and (b, c) E R 3. This means
that a = b and b < c. Clearly this can be done if and only if a < c to begin with (choose b = a). But that is

precisely the statement that (a, c) E R 3. Therefore we have R3 o R5 = R 3. One way to look at this is to say

that Rs, the equality relation, acts as an identity for the composition operation (on the right-although it is

also an identity on the left as well).

d) For (a, c) to be in R4 o R 1 , we must find an element b such that (a, b) E R 1 and (b, c) E R4. This means
that a > b and b ::::; c. Clearly this can always be done simply by choosing b to be small enough. Therefore

we have R4 o R 1 = R2 , the relation that always holds.

e) For (a, c) to be in R5 o R3 , we must find an element b such that (a, b) E R 3 and (b, c) E R5. This means

that a < b and b = c. Clearly this can be done if and only if a < c to begin with (choose b = c). But that

is precisely the statement that (a, c) E R3 . Therefore we have Rs o R3 = R3 . One way to look at this is to

say that Rs , the equality relation, acts as an identity for the composition operation (on the left-although it

is also an identity on the right as well).

f) For (a, c) to be in R3 o R6, we must find an element b such that (a, b) E R6 and (b, c) E R 3. This means

that a =f. b and b < c. Clearly this can always be done simply by choosing b to be small enough. Therefore

we have R3 o R6 = R 2 , the relation that always holds.

g) For (a, c) to be in R4 o R6, we must find an element b such that (a, b) E R6 and (b, c) E R4. This means
that a =f. b and b ::::; c. Clearly this can always be done simply by choosing b to be small enough. Therefore

we have R4 o R6 = R2 , the relation that always holds.

h) For (a, c) to be in R6 o R6, we must find an element b such that (a, b) E R6 and (b, c) E R6. This means

that a =f. b and b =f. c. Clearly this can always be done simply by choosing b to be something other than a
or c. Therefore we have R6 o R6 = R 2 , the relation that always holds. Note that since the answer is not R6
itself, we know that R6 is not transitive.

39. One earns a doctorate by, among other things, writing a thesis under an advisor, so this relation makes sense.

(We ignore anomalies like someone having two advisors or someone being awarded a doctorate without having

an advisor.) For (a, b) to be in R 2, we must find a c such that (a, c) ER and (c, b) ER. In our context, this
says that b got his/her doctorate under someone who got his/her doctorate under a. Colloquially, a is the
academic grandparent of b, or b is the academic grandchild of a. Generalizing, (a, b) E Rn precisely when there

is a sequence of n+ 1 people, starting with a and ending with b, such that each is the advisor of the next person

318 Chapter 9 Relations

in the sequence. People with doctorates like to look at these sequences (and trace their ancestry) back as far as

they can. There is an excellent website for doing so in mathematics (www .genealogy .math.ndsu.nodak. edu).

41. a) The union of two relations is the union of these sets. Thus R 1 U R 2 holds between two integers if R 1

holds or R2 holds (or both, it goes without saying). Thus (a, b) E R 1 U R2 if and only if a= b (mod 3) or

a= b (mod 4). There is not a good easier way to state this, other than perhaps to say that a - b is a multiple

of either 3 or 4, or to work modulo 12 and write a - b = 0, 3, 4, 6, 8, or 9 (mod 12).

b) The intersection of two relations is the intersection of these sets. Thus R1 n R 2 holds between two integers
if R 1 holds and R2 holds. Thus (a, b) E R1 n R2 if and only if a= b (mod 3) and a= b (mod 4). Since this

means that a - b is a multiple of both 3 and 4, and that happens if and only if a - b is a multiple of 12, we

can state this more simply as a= b (mod 12).

c) By definition R1 - R2 = R1 n R2 . Thus this relation holds between two integers if R1 holds and R2

does not hold. We can write this in symbols by saying that (a, b) E R1 - R2 if and only if a = b (mod 3)
and a-:;/:. b (mod 4). We could, if we wished, state this working modulo 12: (a,b) E R 1 - R2 if and only if

a - b = 3, 6, or 9 (mod 12).

d) By definition R2 - R1 = R2 n R1. Thus this relation holds between two integers if R2 holds and R1

does not hold. We can write this in symbols by saying that (a, b) E R2 - R 1 if and only if a = b (mod 4)
and a -:;/:. b (mod 3). We could, if we wished, state this working modulo 12: (a, b) E R2 - R 1 if and only if
a - b = 4 or 8 (mod 12) .

e) We know that R1 tBR2 = (R1 - R2) U (R2 -R1), so we look at our solutions to part (c) and part (d). Thus

this relation holds between two integers if R1 holds and R2 does not hold, or vice versa. We can write this in

symbols by saying that (a, b) E R 1 ffi R 2 if and only if (a= b (mod 3) and a-:;/:. b (mod 4)) or (a= b (mod 4)

and a-:;/:. b (mod 3)). We could, if we wished, state this working modulo 12: (a, b) E R1 ffi R2 if and only if

a - b = 3, 4, 6, 8 or 9 (mod 12). We could also say that a - b is a multiple of 3 or 4 but not both.

43. A relation is just a subset. A subset can either contain a specified element or not; half of them do and half

of them do not. Therefore 8 of the 16 relations on {O, 1} contain the pair (0, 1). Alternatively, a relation on

{O, 1} containing the pair (0, 1) is just a set of the form {(O, 1)} U X, where XS: {(O, 0), (1, 0), (1, 1)}. Since

this latter set has 3 elements, it has 23 = 8 subsets.

45. This is similar to Example 16 in this section.

a) A relation on a set S with n elements is a subset of S x S. Since S x S has n 2 elements, we are asking

for the number of subsets of a set with n 2 elements, which is 2n
2

• In our case n = 4, so the answer is

216 = 65,536.

b) In solving part (a), we had 16 binary choices to make-whether to include a pair (x,y) in the relation or

not as x and y ranged over the set {a, b, c, d}. In this part, one of those choices has been made for us: we

must include (a.a). We are free to make the other 15 choices. So the answer is 215 = 32,768. See Exercise 47

for more problems of this type.

47. These are combinatorics problems, some harder than others. Let A be the set with n elements on which the

relations are defined.

a) To specify a symmetric relation, we need to decide, for each unordered pair {a, b} of distinct elements

of A, whether to include the pairs (a, b) and (b, a) or leave them out; this can be done in 2 ways for each

such unordered pair. Also, for each element a E A, we need to decide whether to include (a, a) or not, again

2 possibilities. We can think of these two parts as one by considering an element to be an unordered pair with

repetition allowed. Thus we need to make this 2-fold choice C(n + 1, 2) times, since there are C(n + 2 - 1, 2)
ways to choose an unordered pair with repetition allowed. Therefore the answer is 2°Cn+l,2) = 2n(n+l)/2 .

Section 9.1 Relations and Their Properties 319

b) This is somewhat similar to part (a). For each unordered pair {a, b} of distinct elements of A, we have

a 3-way choice-either include (a, b) only, include (b, a) only, or include neither. For each element of A we
have a 2-way choice. Therefore the answer is 3C(n,2)2n = 3n(n-l)/2 2".

c) As in part (b) we have a 3-way choice for a -/=- b. There is no choice about including (a, a) in the
relation-the definition prohibits it. Therefore the answer is 3C(n,2) = 3n(n-l)/2 .

d) For each ordered pair (a, b), with a-/=- b (and there are P(n, 2) such pairs), we can choose to include (a, b)
or to leave it out. There is no choice for pairs (a, a). Therefore the answer is 2P(n, 2) = 2n(n-l).

e) This is just like part (a), except that there is no choice about including (a, a). For each unordered pair of

distinct elements of A, we can choose to include neither or both of the corresponding ordered pairs. Therefore
the answer is 2C(n,2) = 2n(n-lJ/2 .

f) We have complete freedom with the ordered pairs (a, b) with a -/=- b, so that part of the choice gives us
2P(n,2) possibilities, just as in part (d). For the decision as to whether to include (a,a), two of the 2"

possibilities are prohibited: we cannot include all such pairs, and we cannot leave them all out. Therefore the
answer is 2P(n,2l(2" - 2) = 2"

2
-"(2" - 2) = 2"

2
- 2n

2
-n+1.

49. The second sentence of the proof asks us to "take an element b E A such that (a, b) E R .'' There is no
guarantee that such an element exists for the taking. This is the only mistake in the proof. If one could

be guaranteed that each element in A is related to at least one element, then symmetry and transitivity

would indeed imply reflexivity. Without this assumption, however, the proof and the proposition are wrong.

As a simple example, take the relation 0 on any nonempty set. This relation is vacuously symmetric and

transitive, but not reflexive. Here is another counterexample: the relation {(1, 1), (1, 2), (2, 1), (2. 2)} on the

set {1,2,3}.

51. We need to show two things. First, we need to show that if a relation R is symmetric, then R = R- 1 , which

means we must show that R <:;;; R- 1 and R- 1 <:;;; R. To do this, let (a, b) E R. Since R is symmetric, this

implies that (b,a) ER. But since R- 1 consists of all pairs (a,b) such that (b,a) ER, this means that

(a, b) E R- 1 . Thus we have shown that R <:;;; R- 1 . Next let (a, b) E R- 1 . By definition this means that

(b,a) ER. Since R is symmetric, this implies that (a,b) ER as well. Thus we have shown that R- 1 <:;;; R.

Second we need to show that R = R- 1 implies that R is symmetric. To this end we let (a, b) E R
and try to show that (b, a) is also necessarily an element of R. Since (a, b) E R, the definition tells us that

(b, a) E R- 1 . But since we are under the hypothesis that R = R- 1 , this tells us that (b, a) E R, exactly as

desired.

53. Suppose that R is reflexive. We must show that R- 1 is reflexive, i.e., that (a,a) E R- 1 for each a EA. Now

since R is reflexive, we know that (a, a) ER for each a ER. By definition, this tells us that (a, a) E R- 1 , as

desired. (Interchanging the two a's in the pair (a, a) leaves it as it was.) Conversely, if R- 1 is reflexive, then

(a,a) E R- 1 for each a EA. By definition this means that (a,a) ER (again we interchanged the two a's).

55. We prove this by induction on n. The case n = 1 is trivial, since it is the statement R = R. Assume the

inductive hypothesis that R" = R. We must show that R"+l = R. By definition R"+1 = R" o R. Thus our

task is to show that R" o R <:;;; R and R <:;;; R" o R. The first uses the transitivity of R, as follows. Suppose

that (a, c) E R" o R. This means that there is an element b such that (a, b) E R and (b, c) E R". By the

inductive hypothesis, the latter statement implies that (b, c) E R. Thus by the transitivity of R, we know

that (a, c) ER, as desired.

Next assume that (a, b) E R. We must show that (a, b) E R" o R. By the inductive hypothesis, Rn = R,
and therefore R" is reflexive by assumption. Thus (b, b) ER". Since we have (a, b) ER and (b, b) ER", we

have by definition that (a, b) is an element of R" o R, exactly as desired. (The first half of this proof was not

really necessary, since Theorem 1 in this section already told us that R" <:;;; R for all n.)

322 Chapter 9 Relations

there (forming the first set of m-tuples). A simple example would be to let R = {(a,b)} and S = {(a,c)},

n = 2, m = 1, and i 1 = 1. Then R - S = R, so P1 (R - S) = P 1 (R) = {(a)}. On the other hand,

P1(R) = P1(S) ={(a)}, so P1(R) - P1(S) = 0.

29. This is similar to Example 13.

a) Since two databases are listed in the "FROM" field, the first operation is to form the join of these two

databases, specifically the join J 2 of these two databases. We then apply the selection operator with the

condition "Quantity :".'.: 10 ." This join will have eight 5-tuples in it. Finally we want just the Supplier and

Project, so we are forming the projection Pl,3.

b) Four of the 5-tuples in the joined database have a quantity of no more than 10. The output, then, is the

set of the four 2-tuples corresponding to these fields: (23, 1), (23, 3), (31, 3), (32, 4).

31. A primary key is a domain whose value determines the values of all the other domains. For this relation, this

does not happen. The third domain (the modulus) is not a primary key, because, for example, 1 = 11 (mod 10)

and 2 = 12 (mod 10), so the triples (1, 11, 10) and (2, 12, 10) are both in the relation. Knowing that the

third component of a triple is 10 does not tell us what the other two components are. Similarly, the triples

(1, 11. 10) and (1, 21. 10) are both in the relation, so the first domain is not a key; and the triples (1, 11, 10)

and (11, 11, 10) are both in the relation, so the second domain is not a key.

SECTION 9.3 Representing Relations

l\Jatrices and directed graphs provide useful ways for computers and humans to represent relations and manip

ulate them. Become familiar with working with these representations and the operations on them (especially

the matrix operation for forming composition) by working these exercises. Some of these exercises explore

how properties of a relation can be found from these representations.

1. In each case we use a 3 x 3 matrix, putting a 1 in position (i, j) if the pair (i, j) is in the relation and a 0 in

position (i,j) if the pair (i,j) is not in the relation. For instance, in part (a) there are l's in the first row,

since each of the pairs (1.1), (1, 2), and (1, 3) are in the relation, and there are O's elsewhere.

a) b) c) d)

3. a) Since the (1,l)th entry is a 1, (1,1) is in the relation. Since (1,2)th entry is a 0, (1,2) is not in the

relation. Continuing in this manner, we see that the relation contains (1, 1), (1, 3), (2, 2), (3, 1), and (3, 3).

b) (1,2). (2,2), and (3,2) c) (1,1), (1.2), (1,3), (2,1), (2,3), (3,1), (3,2), and (3,3)

5. An irreflexive relation (see the preamble to Exercise 11 in Section 9.1) is one in which no element is related

to itself. In the matrix, this means that there are no 1 's on the main diagonal (position mii for some i).
Equivalently, the relation is irreflexive if and only if every entry on the main diagonal of the matrix is 0.

7. For reflexivity we want all 1 's on the main diagonal; for irreflexivity we want all O's on the main diagonal; for

symmetry, we want the matrix to be symmetric about the main diagonal (equivalently, the matrix equals its

transpose); for antisymmetry we want there never to be two l's symmetrically placed about the main diagonal

(equivalently, the meet of the matrix and its transpose has no l's off the main diagonal); and for transitivity

we want the Boolean square of the matrix (the Boolean product of the matrix and itself) to be "less than or

equal to" the original matrix in the sense that there is a 1 in the original matrix at every location where there

is a 1 in the Boolean square.

Section 9.3 Representing Relations 323

a) Since there are all l's on the main diagonal, this relation is reflexive and not irreflexive. Since the matrix is
symmetric, the relation is symmetric. The relation is not antisymmetric~look at positions (1, 3) and (3, 1).

Finally, the Boolean square of this matrix is itself, so the relation is transitive.

b) Since there are both O's and l's on the main diagonal, this relation is neither reflexive nor irreflexive. Since

the matrix is not symmetric, the relation is not symmetric (look at positions (1, 2) and (2, 1), for example).

The relation is antisymmetric since there are never two l's symmetrically placed with respect to the main
diagonal. Finally, the Boolean square of this matrix is itself, so the relation is transitive.

c) Since there are both O's and l's on the main diagonal, this relation is neither reflexive nor irreflexive. Since

the matrix is symmetric, the relation is symmetric. The relation is not antisymmetric~look at positions (1, 3)

and (3, 1), for example. Finally, the Boolean square of this matrix is the matrix with all l's, so the relation

is not transitive (1 is related to 2, and 2 is related to 1, but 2 is not related to 2).

9. Note that the total number of entries in the matrix is 1002 = 10,000.

a) There is a 1 in the matrix for each pair of distinct positive integers not exceeding 100, namely in position

(a, b) where a > b. Thus the answer is the number of subsets of size 2 from a set of 100 elements, i.e.,
C(lOO, 2) = 4950.

b) There is a 1 in the matrix at each position except the 100 positions on the main diagonal. Therefore the

answer is 1002 - 100 = 9900.

c) There is a 1 in the matrix at each entry just below the main diagonal (i.e., in positions (2, 1), (3, 2), ... ,

(100, 99). Therefore the answer is 99.

d) The entire first row of this matrix corresponds to a= 1. Therefore the matrix has 100 nonzero entries.

e) This relation has only the one element (1, 1) in it, so the matrix has just one nonzero entry.

11. Since the relation R is the relation that contains the pair (a, b) (where a and b are elements of the appropriate

sets) if and only if R does not contain that pair, we can form the matrix for R simply by changing all the l's
to O's and O's to l's in the matrix for R.

13. Exercise 12 tells us how to do part (a) (we take the transpose of the given matrix MR, which in this case

happens to be the matrix itself). Exercise 11 tells us how to do part (b) (we change l's to O's and O's to l's

in MR)· For part (c) we take the Boolean product of MR with itself.

a) b) c) [: : : l
15. We compute the Boolean powers of MR; thus MR2 = M~J = MR 8 MR, MRa = M~l = MR 8 M~J, and

MR4 = M~l = MR8M~l.

a)

[! : ~ l b)

[~ ; :J
c) [: ; : l

17. The matrix for the complement has a 1 wherever the matrix for the relation has a 0, and vice versa. Therefore

the number of nonzero entries in MR is n 2 - k, since these matrices have n rows and n columns.

19. In each case we need a vertex for each of the elements, and we put in a directed edge from x to y if there

is a 1 in position (x, y) of the matrix. For simplicity we have indicated pairs of edges between the same two
vertices in opposite directions by using a double arrowhead, rather than drawing two separate lines.

324

1~4

2~3
(a)

2 3

0 0
(b)

1~4 1V14

2~3 2~3
(c) (d)

Chapter 9 Relations

21. In each case we need a vertex for each of the elements, and we put in a directed edge from x to y if there

is a 1 in position (x, y) of the matrix. For simplicity we have indicated pairs of edges between the same two

vertices in opposite directions by using a double arrowhead, rather than drawing two separate lines.

(a)

1v2
3~4

(c)

23. We list all the pairs (x, y) for which there is an edge from x to y in the directed graph:

{(a, b), (a, c), (b, c), (c, b)}.

25. We list all the pairs (x, y) for which there is an edge from x to y in the directed graph:

{(a,c),(b,a),(c,d), (d,b)}.

27. We list all the pairs (x, y) for which there is an edge from x to y in the directed graph:

{(a,a), (a,b), (a,c), (b,a), (b,b), (b,c),(c,a), (c,b),(d,d)}.

29. An asymmetric relation is one for which it never happens that a is related to b and simultaneously b is related

to a, even when a = b. In terms of the directed graph, this means that we must see no loops and no closed
paths of length 2 (i.e., no pairs of edges between two vertices going in opposite directions).

31. Recall that the relation is reflexive if there is a loop at each vertex; irreflexive if there are no loops at all;

symmetric if edges appear only in anti parallel pairs (edges from one vertex to a second vertex and from the

second back to the first); antisymmetric if there is no pair of antiparallel edges; and transitive if all paths

of length 2 (a pair of edges (x, y) and (y, z)) are accompanied by the corresponding path of length 1 (the

edge (x, z)). The relation drawn in Exercise 23 is not reflexive but is irreflexive since there are no loops. It is

not symmetric, since, for instance, the edge (a, b) is present but not the edge (b, a). It is not antisymmetric,

since both edges (b, c) and (c, b) are present. It is not transitive, since the path (b, c), (c, b) from b to b is

not accompanied by the edge (b, b). The relation drawn in Exercise 24 is reflexive and not irreflexive since

there is a loop at each vertex. It is not symmetric, since, for instance, the edge (b, a) is present but not the
edge (a, b). It is antisymmetric, since there are no pairs of anti parallel edges. It is transitive, since the only

nontrivial path of length 2 is bac, and the edge (b, c) is present. The relation drawn in Exercise 25 is not

reflexive but is irreflexive since there are no loops. It is not symmetric, since, for instance, the edge (b, a) is

present but not the edge (a, b). It is antisymmetric, since there are no pairs of anti parallel edges. It is not

transitive, since the edges (a, c) and (c, d) are present, but not (a, d).

33. Since the inverse relation consists of all pairs (b, a) for which (a, b) is in the original relation, we just have to

take the digraph for R and reverse the direction on every edge.

Section 9.4 Closures of Relations 325

35. We prove this statement by induction on n. The basis step n = 1 is tautologically true, since M~l =MR.

Assume the inductive hypothesis that M~l is the matrix representing Rn. Now M~+l] =MR 8 M~l. By

the inductive hypothesis and the assertion made before Example 5, that MsoR = MR 8 Ms, the right-hand
side is the matrix representing Rn o R. But Rn o R = Rn+l , so our proof is complete.

SECTION 9.4 Closures of Relations
This section is harder than the previous ones in this chapter. Warshall's algorithm, in particular, is fairly
tricky, and Exercise 27 should be worked carefully, following Example 8. It is easy to forget to include the

loops (a, a) when forming transitive closures "by hand."

1. a) The reflexive closure of R is R together with all the pairs (a, a). Thus in this case the closure of R is

{(0,0),(0,1),(1, 1),(1,2),(2,0),(2,2),(3,0),(3,3)}.

b) The symmetric closure of R is R together with all the pairs (b, a) for which (a, b) is in R. For example,

since (1, 2) is in R, we need to add (2, 1). Thus the closure of R is { (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2),

(2,0),(2,1), (2,2), (3,0)}.

3. To form the symmetric closure we need to add all the pairs (b, a) such that (a, b) is in R. In this case, that

means that we need to include pairs (b, a) such that a divides b, which is equivalent to saying that we need

to include all the pairs (a, b) such that b divides a. Thus the closure is { (a, b) I a divides b or b divides a } .

5. We form the reflexive closure by taking the given directed graph and appending loops at all vertices at which

there are not already loops.

7. We form the reflexive closure by taking the given directed graph and appending loops at all vertices at which

there are not already loops.

9. We form the symmetric closure by taking the given directed graph and appending an edge pointing in the
opposite direction for every edge already in the directed graph (unless it is already there); in other words, we

append the edge (b,a) whenever we see the edge (a,b). We have labeled the figures below (a), (b), and (c),

corresponding to Exercises 5, 6, and 7, respectively.

c c d

(a) (b) (c)

326 Chapter 9 Relations

11. We are asked for the symmetric and reflexive closure of the given relation. We form it by taking the given
directed graph and appending (1) a loop at each vertex at which there is not already a loop and (2) an edge
pointing in the opposite direction for every edge already in the directed graph (unless it is already there). We

have labeled the figures below (a), (b), and (c), corresponding to Exercises 5, 6, and 7, respectively.

(a) (b) (c)

13. The symmetric closure of R is RuR- 1 . The matrix for R- 1 is Mk, as we saw in Exercise 12 in Section 9.3.

The matrix for the union of two relations is the join of the matrices for the two relations, as we saw in

Section 9.3. Therefore the matrix representing the symmetric closure of R is indeed MR V Mk.

15. If R is already irreflexive, then it is clearly its own irreflexive closure. On the other hand if R is not irreflexive,
then there is no relation containing R that is irreflexive, since the loop or loops in R prevent any such relation

from being irreflexive. Thus in this case R has no irreflexive closure. This exercise shows essentially that the

concept of "irreflexive closure" is rather useless, since no relation has one unless it is already irreflexive (in

which case it is its own ''irreflexive closure").

17. A circuit of length 3 can be written as a sequence of 4 vertices, each joined to the next by an edge of the

given directed graph, ending at the same vertex at which it began. There are several such circuits here, and

we just have to be careful and systematically list them all. There are the circuits formed entirely by the loops:

aaaa, cccc, and eeee. The triangles abea and adea also qualify. Two circuits start at b: bccb and beab.

There are two more circuits starting at c, namely ccbc and cbcc. Similarly there are the circuits deed, eede

and edee, as well as the other trips around the triangle: eabe, dead, and eade.

19. The way to form these powers is first to form the matrix representing R, namely

MR= r~ ~ ~ ~ ~] ,
0 0 1 0 0
1 1 0 1 0

and then take successive Boolean powers of it to get the matrices representing R 2
, R3 , and so on. Finally, for

part (f) we take the join of the matrices representing R, R 2 , ... , R 5 . Since the matrix is a perfectly good

way to express the relation, we will not list the ordered pairs.

a) The matrix for R 2 is the Boolean product of the matrix displayed above with itself, namely

MR'~ M~I ~ rl ~ ~ ~ !1
b) The matrix for R3 is the Boolean product of the first matrix displayed above with the answer to part (a),

namely

Mn,~ M~I ~ [i
1 1 1

~] 0 0 0
0 1 1
1 1 1
0 1 0

Section 9.4 Closures of Relations 327

c) The matrix for R 4 is the Boolean product of the first matrix displayed above with the answer to part (b),

namely

[

1 0 1
1 1 1

MR4 = M~l = 1 1 1
1 0 1
1 1 1

~ ~1 1 1
1 1
1 1

d) The matrix for R 5 is the Boolean product of the first matrix displayed above with the answer to part (c),
namely

MR
5

= M~l = [i ~ i i ill ·
1 1 1 1

e) The matrix for R6 is the Boolean product of the first matrix displayed above with the answer to part (d),

namely
1
1
1
1
1 !l

f) The matrix for R* is the join of the first matrix displayed above and the answers to parts (a) through (d),

namely

MR• ~MRVM~l VM~l VM~l VM~] ~ [j
1 1 1

j]
1 1 1
1 1 1
1 1 1
1 1 1

21. a) The pair (a, b) is in R 2 if there is a person c other than a or b who is in a class with a and a class with b.

23.

25.

Note that it is almost certain that (a, a) is in R 2 , since as long as a is taking a class that has at least one

other person in it, that person serves as the "c."

b) The pair (a, b) is in R 3 if there are persons c (different from a) and d (different from b and c) such that

c is in a class with a, c is in a class with d, and d is in a class with b.

c) The pair (a, b) is in R* if there is a sequence of persons, c0 , c1 , c2 , ... , Cn, with n 2: 1, such that co = a,
Cn = b, and for each i from 1 ton, Ci-l f. Ci and Ci-l is in at least one class with Ci·

Suppose that (a, b) E R*; then there is a path from a to b in (the digraph for) R. Given such a path, if R
is symmetric, then the reverse of every edge in the path is also in R; therefore there is a path from b to a
in R (following the given path backwards). This means that (b, a) is in R* whenever (a, b) is, exactly what

we needed to prove.

Algorithm 1 finds the transitive closure by computing the successive powers and taking their join. We exhibit

our answers in matrix form as MR V M~J V ... V M~J = MR· .

a)

[~
1 0 !l v [i

0 1

~] v [~
1 0

~] v [~
0 1

~] [l
1 1

ll 0 1 1 0 0 1 1 0 1 1
0 0 0 0 1 0 0 1 1 1
0 0 1 0 0 1 1 0 1 1

b)

[l
0 0

~] v [l
0 0

~] v [l
0 0

~] v [l
0 0

~] [l
0 0

Il 0 1 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0 1
0 1 0 0 0 1 0 0 0 1

328 Chapter 9 Relations

c) [O I I l l [O 0 I 1 l [o o o 1 l [o o o ol [o 1 l I] 0 0 1 1 v 0 0 0 1 0000 0000 0 0 1 1
0 0 0 1 0 0 0 ovoooovoooo = 0 0 0 1
0 0 0 0 0 0 0 0 0000 0000 0 0 0 0

Note that the relation was already transitive, so its transitive closure is itself.

d)

[l
0 0

] v [j
1 0

}[j
1 1

j]v [j
1 1

il [j
1 1

!l
0 1 1 0 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1
1 0 0 1 1 0 1 1 1 1

27. In Warshall's algorithm (Algorithm 2 in this section), we compute a sequence of matrices W 0 (the matrix

representing R), W 1 , W 2 , ... , W n, the last of which represents the transitive closure of R. Each matrix

Wk comes from the matrix Wk-1 in the following way. The (i,j)th entry of Wk is the "V" of the (i,j)th

entryofWk-l with the"/\'' ofthe (i,k)th entry and the (k,j)th entryofWk-l· Wewillexhibitoursolution

by listing the matrices W 0 , W 1 , W 2 , W 3 , W 4 , in that order; W 4 represents the answer. In each case

W o is the matrix of the given relation. To compute the next matrix in the solution, we need to compute it

one entry at a time, using the equation just discussed (the "V" of the corresponding entry in the previous

matrix with the "/\ '' of two entries in the old matrix), i.e., as i and j each go from 1 to 4, we need to write
down the (i, j)th entry using this formula. Note that in computing Wk the kth row and the kth column are
unchanged, but some of the entries in other rows and columns may change.

a)

b)

c) 1 1
0 1
0 0
0 0

1 1
0 1
0 0
0 0 ~] [~

Note that the relation was already transitive, so each matrix in the sequence was the same.

d) 0 0
1 1
1 1
1 1 ll [j

1
1
1
1

1
1
1
1 ll

29. a) We need to include at least the transitive closure, which we can compute by Algorithm 1 or Algorithm 2 to

be (in matrix form) [H H] . All we need in addition is the pair (2, 2) in order to make the relation

1 1 0 1
reflexive. Note that the result is still transitive (the addition of a pair (a, a) cannot make a transitive relation

[~ ~ ~ ~i no longer transitive), so our answer is
0 0 1 0

·

1 1 0 1

Section 9.5 Equivalence Relations

b) The symmetric closure of the original relation is represented by
[

0011

1

0
0
0

329

~ ~] · We need at le"-'t the

tnu.,itive closure of this 'elation, namely [~ ~ ~ ~] · Since it is aL'K> eymmctdc, we file done. Note

that it would not have been correct to find first the transitive closure of the original matrix and then make
it symmetric, since the pair (2, 2) would be missing. What is going on here is that the transitive closure

of a symmetric relation is still symmetric, but the symmetric closure of a transitive relation might not be

transitive.

c) Since the answer to part (b) was already reflexive, it must be the answer to this part as well.

31. Algorithm 1 has a loop executed O(n) times in which the primary operation is the Boolean product compu

tation (the join operation is fast by comparison). If we can do the product in O(n2·8) bit operations, then

the number of bit operations in the entire algorithm is O(n · n 2·8) = O(n3·8). Since Algorithm 2 does not use

the Boolean product, a fast Boolean product algorithm is irrelevant, so Algorithm 2 still requires O(n3) bit
operations.

33. There are two ways to go. One approach is to take the output of Algorithm 1 as it stands and then make sure

that all the pairs (a, a) are included by forming the join with the identity matrix (specifically set B := B V In).
See the discussion in Exercise 29a for the justification. The other approach is to insure the reflexivity at the
beginning by initializing A := Mr V In; if we do this, then only paths of length strictly less than n need to
be looked at, so we can change the n in the loop to n - 1.

35. a) No relation that contains R is not reflexive, since R already contains all the pairs (0, 0), (1, 1), and (2, 2).

Therefore there is no "nonreflexive" closure of R.

b) Suppose S were the closure of R with respect to this property. Since R does not have an odd number

of elements, S =/. R, so S must be a proper superset of R. Clearly S cannot have more than 5 elements,

for if it did, then any subset of S consisting of R and one element of S - R would be a proper subset of

S with the property; this would violate the requirement that S be a subset of every superset of R with the

property. Thus S must have exactly 5 elements. Let T be another superset of R with 5 elements (there

are 9 - 4 = 5 such sets in all). Thus T has the property, but S is not a subset of T. This contradicts the

definition. Therefore our original assumption was faulty, and the closure does not exist.

SECTION 9.5 Equivalence Relations

This section is extremely important. If you do nothing else, do Exercise 9 and understand it, for it deals with

the most common instances of equivalence relations. (See the comments in our solution below for some added

insight.) Exercise 16 is interesting-it hints at what fractions really are (if understood properly) and perhaps

helps to explain why children (and adults) usually have so much trouble with fractions: they really involve
equivalence relations. Spend some time thinking about fractions in this context. (See also Writing Project 4
for this chapter.)

It is usually easier to understand equivalence relations in terms of the associated partition-it's a more

concrete visual image. Thus make sure you understand exactly what Theorem 2 says. Look at Exercise 67 for

the relationship between equivalence relations and closures.

330 Chapter 9 Relations

1. In each case we need to check for reflexivity, symmetry, and transitivity.

a) This is an equivalence relation; it is easily seen to have all three properties. The equivalence classes all

have just one element.

b) This relation is not reflexive since the pair (1, 1) is missing. It is also not transitive, since the pairs (0, 2)

and (2, 3) are there, but not (0, 3).

c) This is an equivalence relation. The elements 1 and 2 are in the same equivalence class; 0 and 3 are each

in their own equivalence class.

d) This relation is reflexive and symmetric, but it is not transitive. The pairs (1, 3) and (3, 2) are present,

but not (1, 2).

e) This relation would be an equivalence relation were the pair (2, 1) present. As it is, its absence makes the

relation neither symmetric nor transitive.

3. As in Exercise 1, we need to check for reflexivity, symmetry, and transitivity.

a) This is an equivalence relation, one of the general form that two things are considered equivalent if they

have the same "something" (see Exercise 9 for a formalization of this idea). In this case the "something" is

the value at 1.

b) This is not an equivalence relation because it is not transitive. Let f(x) = 0, g(x) = x, and h(x) = 1

for all x E Z. Then f is related tog since f(O) = g(O), and g is related to h since g(l) = h(l), but f is
not related to h since they have no values in common. By inspection we see that this relation is reflexive and
symmetric.

c) This relation has none of the three properties. It is not reflexive, since f(x) - f(x) = 0 =f. 1. It is not

symmetric, since if j(x)- g(x) = 1, then g(x)- f(x) = -1=f.1. It is not transitive, since if f(x)- g(x) = 1

and g(x) - h(x) = 1, then f(x) - h(x) = 2 =f. 1.

d) This is an equivalence relation. Two functions are related here if they differ by a constant. It is clearly
reflexive (the constant is 0). It is symmetric, since if f (x) - g(x) = C, then g(x) - f (x) = -C. It is transitive,

since if f(x) - g(x) = C1 and g(x) - h(x) = C2 , then f(x) - h(x) = C3 , where C3 = C1 + C2 (add the first

two equations).

e) This relation is not reflexive, since there are lots of functions f (for instance, f(x) = x) that do not have

the property that f(O) = f(l). It is symmetric by inspection (the roles of f and g are the same). It is not
transitive. For instance, let f(O) = g(l) = h(O) = 7, and let f(l) = g(O) = h(l) = 3; fill in the remaining

values arbitrarily. Then f and g are related, as are g and h, but f is not related to h since 7 =f. 3.

5. Obviously there are many possible answers here. We can say that two buildings are equivalent if they were

opened during the same year; an equivalence class consists of the set of buildings opened in a given year (as
long as there was at least one building opened that year). For another example, we can define two buildings to

be equivalent if they have the same number of stories; the equivalence classes are the set of 1-story buildings,

the set of 2-story buildings, and so on (one class for each n for which there is at least one n-story building).

In our third example, partition the set of all buildings into two classes~those in which you do have a class this
semester and those in which you don't. (We assume that each of these is nonempty.) Every building in which
you have a class is equivalent to every building in which you have a class (including itself), and every building

in which you don't have a class is equivalent to every building in which you don't have a class (including

itself).

7. Two propositions are equivalent if their truth tables are identical. This relation is reflexive, since the truth

table of a proposition is identical to itself. It is symmetric, since if p and q have the same truth table, then

q and p have the same truth table. There is one technical point about transitivity that should be noted. We

need to assume that the truth tables, as we consider them for three propositions p, q, and r, have the same

Section 9.5 Equivalence Relations 331

atomic variables in them. If we make this assumption (and it cannot hurt to do so, since adding information

about extra variables that do not appear in a pair of propositions does not change the truth value of the

propositions), then we argue in the usual way: if p and q have identical truth tables, and if q and r have
identical truth tables, then p and r have that same common truth table. The proposition T is always true;
therefore the equivalence class for this proposition consists of all propositions that are always true, no matter

what truth values the atomic variables have. Recall that we call such a proposition a tautology. Therefore

the equivalence class of T is the set of all tautologies. Similarly. the equivalence class of F is the set of all

contradictions.

9. This is an important exercise, since very many equivalence relations are of this form. (In fact, all of them

are-see Exercise 10. A relation defined by a condition of the form '' x and y are equivalent if and only if

they have the same ... '' is an equivalence relation. The function f here tells what about x and y are "the

same.")

a) This relation is reflexive, since obviously f(x) = f(x) for all x EA. It is symmetric, since if f(x) = f(y),
then f(y) = J(x) (this is one of the fundamental properties of equality). It is transitive, since if f(x) = J(y)

and J(y) = f(z), then J(x) = f(z) (this is another fundamental property of equality).

b) The equivalence class of xis the set of ally EA such that f(y) = f(x). This is by definition just the

inverse image of f(x). Thus the equivalence classes are precisely the sets 1- 1 (b) for every bin the range

off.

11. This follows from Exercise 9, where f is the function that takes a bit string of length 3 or more to its first 3

bits.

13. This follows from Exercise 9, where f is the function that takes a bit string of length 3 or more to the ordered

pair (b1 , b3), where b1 is the first bit of the string and b3 is the third bit of the string. Two bit strings agree on

their first and third bits if and only if the corresponding ordered pairs for these two strings are equal ordered

pairs.

15. By algebra, the given condition is the same as the condition that f ((a, b)) = f ((c, d)), where f ((x, y)) = x -y.
Therefore by Exercise 9 this is an equivalence relation. If we want a more explicit proof, we can argue as

follows. For reflexivity, ((a, b), (a, b)) E R because a + b = b + a. For symmetry, ((a, b), (c, d)) E R if and

only if a+ d = b + c, which is equivalent to c + b = d +a, which is true if and only if ((c, d), (a, b)) ER. For

transitivity, suppose ((a, b), (c, d)) E R and ((c, d), (e, f)) E R. Thus we have a+ d = b + c and c + e = d + f.
Adding, we obtain a + d + c + e = b + c + d + f. Simplifying, we have a + e = b + f, which tells us that
((a, b), (e, f)) ER.

17. a) This follows from Exercise 9, where the function f from the set of differentiable functions (from R to R)
to the set of functions (from R to R) is the differentiation operator-i.e., f of a function g is the function

g' . The best way to think about this is that any relation defined by a statement of the form '"a and b are

equivalent if they have the same whatever" is an equivalence relation. Here "whatever" is ''derivative"; in the

general situation of Exercise 9, "whatever" is "function value under f ."
b) We are asking for all functions that have the same derivative that the function f(x) = x 2 has, i.e., all

functions of x whose derivative is 2x. In other words, we are asking for the general antiderivative of 2x, and

we know that J 2x = x 2 + C, where C is any constant. Therefore the functions in the same equivalence class

as J(x) = x2 are all the functions of the form g(x) = x2 + C for some constant C. Indefinite integrals in
calculus, then, give equivalence classes of functions as answers, not just functions.

19. This follows from Exercise 9, where the function f from the set of all URLs to the set of all Web pages is the

function that assigns to each URL the Web page for that URL.

332 Chapter 9 Relations

21. We need to observe whether the relation is reflexive (there is a loop at each vertex), symmetric (every edge
that appears is accompanied by its antiparallel mate-an edge involving the same two vertices but pointing
in the opposite direction), and transitive (paths of length 2 are accompanied by the path of length 1-i.e.,

edge-between the same two vertices in the same direction). We see that this relation is not transitive, since

the edges (c, d) and (d, c) are missing.

23. As in Exercise 21, this relation is not transitive, since several required edges are missing (such as (a, c)).

25. This follows from Exercise 9, with f being the function from bit strings to nonnegative integers given by

f(s) =the number of l's ins.

27. Only parts (a) and (b) are relevant here, since the others are not equivalence relations.
a) An equivalence class is the set of all people who are the same age. (To really identify the equivalence class
and the equivalence relation itself, one would need to specify exactly what one meant by "the same age." For

example, we could define two people to be the same age if their official dates of birth were identical. In that

case, everybody born on April 25, 1948, for example, would constitute one equivalence class.)

b) For each pair (m, f) of a man and a woman, the set of offspring of their union, if nonempty, is an equivalence
class. In many cases, then, an equivalence class consists of all the children in a nuclear family with children.

(In real life, of course, this is complicated by such things as divorce and remarriage.)

29. The equivalence class of 011 is the set of all bit strings that are related to 011, namely the set of all bit strings

that have the same number of l's as 011. In other words, it is the (infinite) set of all bit strings with exactly

2 l's: {11, 110, 101, 011, 1100, 1010, 1001, ... }.

31. Since two strings are related if they agree beyond their first 3 bits, the equivalence class of a bit string xyzt,

where x, y, and z are bits, and t is a bit string, is the set of all bit strings of the form x' y' z't, where x', y',
and z' are any bits.

a) the set of all bit strings of length 3 (take t = ,\ in the formulation given above)

b) the set of all bit strings of length 4 that end with a 1

c) the set of all bit strings of length 5 that end 11

d) the set of all bit strings of length 8 that end 10101

33. This is like Example 15. Each bit string of length less than 4 is in an equivalence class by itself ([A]R4 =
{A}, [O]R4 = {0}, [l]R4 = {l}, [00]R4 = {00}, [Ol]R4 = {01}, ... , [lll]R4 = {111}). This accounts for

1 + 2 + 4 + 8 = 15 equivalence classes. The remaining 16 equivalence classes are determined by the bit strings

of length 4:

[0000] R 4 = { 0000, 00000, 00001, 000000, 000001, 000010, 000011, 0000000, ... }

[0001]R4 = {0001, 00010, 00011, 000100, 000101, 000110, 000111, 0001000, ... }

[0010]R4 = {0010, 00100, 00101, 001000, 001001, 001010, 001011, 0010000, ... }

[llll]R, = {llll,11110,lllll,111100,111101,111110,llllll,1111000, ... }

35. We have by definition that [n]s = { i I i = n (mod 5) } .

a) [2]s = { i I i = 2 (mod 5)} = { ... , -8, -3, 2, 7, 12, ... }

b) [3]s = { i Ii= 3 (mod 5)} = { .. .,-7,-2,3,8, 13, ... }

c) [6]s = { i Ii= 6 (mod 5)} = { ... , -9, -4, 1, 6, 11, ... }

d) [-3]s = { i Ii= -3 (mod 5)} = { ... , -8, -3, 2, 7, 12, ... } (the same as [2]s)

Section 9.5 Equivalence Relations 333

37. This is very similar to Example 14. There are 6 equivalence classes, namely

[0]6 ={ ... ' -12, -6, 0, 6, 12, ... } '

[1]6 ={ ... '-11, -5, 1, 7, 13, ... } '

[2]6 ={ ... ' -10, -4, 2, 8, 14, ... } '

[3]6 ={ ... '-9, -3, 3, 9, 15, ... } '

[4]6 ={ ... ' -8, -2,4, 10, 16, ... } '

[5]6 ={ ... '-7, -1, 5, 11, 17, ... } .

Another way to describe this collection is to say that it is the collection of sets { 6n + k I n E Z } for
k = 0,1,2,3,4,5.

39. a) We observed in the solution to Exercise 15 that (a, b) is equivalent to (c, d) if a - b = c - d. Thus because

1-2 = -1, we have [(1,2)] = {(a,b) I a-b= -1} = {(1,2),(3,4),(4,5),(5,6), ... }.

b) Since the equivalence class of (a, b) is entirely determined by the integer a - b, which can be negative,
positive, or zero, we can interpret the equivalences classes as being the integers. This is a standard way to

define the integers once we have defined the whole numbers.

41. The sets in a partition must be nonempty, pairwise disjoint, and have as their union all of the underlying set.

a) This is not a partition, since the sets are not pairwise disjoint (the elements 2 and 4 each appear in two
of the sets) .

b) This is a partition. c) This is a partition.

d) This is not a partition, since none of the sets includes the element 3.

43. In each case, we need to see that the collection of subsets satisfy three conditions: they are nonempty, they

are pairwise disjoint, and their union is the entire set of 256 bit strings of length 8.

a) This is a partition, since strings must begin either 1 or 0, and those that begin 0 must continue with either

0 or 1 in their second position. It is clear that the three subsets satisfy the conditions.

b) This is not a partition, since these subsets are not pairwise disjoint. The string 00000001, for example,
contains both 00 and 01.

c) This is clearly a partition. Each of these four subsets contains 64 bit strings, and no two of them overlap.

d) This is not a partition, because the union of these subsets is not the entire set. For example, the string

00000010 is in none of the subsets.

e) This is a partition. Each bit string contains some number of l's. This number can be identified in exactly

one way as of the form 3k, the form 3k + 1, or the form 3k + 2, where k is a nonnegative integer; it really is

just looking at the equivalence classes of the number of l's modulo 3.

45. In each case, we need to see that the collection of subsets satisfy three conditions: they are nonempty, they

are pairwise disjoint, and their union is the entire set Z x Z.

a) This is not a partition, since the subsets are not pairwise disjoint. The pair (2, 3), for example, is in both

of the first two subsets listed.

b) This is a partition. Every pair satisfies exactly one of the conditions listed about the parity of x and y,

and clearly these subsets are nonempty.

c) This is not a partition, since the subsets are not pairwise disjoint. The pair (2, 3), for example, is in both

of the first two subsets listed. Also, (0, 0) is in none of the subsets.

d) This is a partition. Every pair satisfies exactly one of the conditions listed about the divisibility of x and

y by 3, and clearly these subsets are nonempty.

334 Chapter 9 Relations

e) This is a partition. Every pair satisfies exactly one of the conditions listed about the positiveness of x and
y, and clearly these subsets are nonempty.

t) This is not a partition, because the union of these subsets is not all of Z x Z. In particular, (0, 0) is in

none of the parts.

47. In each case, we need to list all the pairs we can where both coordinates are chosen from the same subset. We

should proceed in an organized fashion, listing all the pairs corresponding to each part of the partition.

a) {(0,0), (1, 1),(1,2),(2. 1), (2,2), (3,3), (3,4), (3,5), (4,3),(4,4),(4,5), (5,3),(5,4), (5,5)}
b) {(0,0), (0, 1), (1,0), (1, 1), (2,2),(2,3),(3,2), (3,3),(4,4),(4,5), (5,4),(5,5)}
c) {(0,0), (0, 1), (0,2), (1,0), (1, 1), (1,2), (2,0), (2, 1), (2,2), (3,3), (3,4), (3,5), (4,3), (4,4), (4,5), (5,3),
(5, 4), (5, 5)}

d) {(0,0), (1, 1), (2,2),(3,3),(4,4),(5,5)}

49. We need to show that every equivalence class modulo 6 is contained in an equivalence class modulo 3. We claim

that in fact, for each n E Z, [n]6 (,;:; [nh. To see this suppose that m E [n]6. This means that m = n (mod 6),

i.e., that m - n is a multiple of 6. Then perforce m - n is a multiple of 3, so m = n (mod 3), which means

that m E [nh.

51. By the definition given in the preamble to Exercise 49, we need to show that every set in the first partition is

a subset of some set in the second partition. Let A be a set in the first partition. So A is the set of all bit

strings of length 16 that agree on their last eight bits. Pick a particular element x of A, and suppose that the

last four bits of x are abed. Then the set of all bit strings of length 16 whose last four bits are abed is one
of the sets in the second partition, and clearly every string in A is in that set, since every string in A agrees

with x on the last eight bits, and therefore perforce agrees on the last four bits.

53. We are asked to show that every equivalence class for R31 is a subset of some equivalence class for Rs. Let

[x]R31 be an arbitrary equivalence class for R31. We claim that [x]R31 <:;; [x]R8 ; proving this claim finishes the
proof. To show that one set is a subset of another set, we choose an arbitrary element y in the first set and

show that it is also an element of the second set. In this case since y E [x]R
3
,, we know that y is equivalent

to x under R31 , that is, that either y = x or y and x are each at least 31 characters long and agree on their

first 31 characters. Because strings that are at least 31 characters long and agree on their first 31 characters

perforce are at least 8 characters long and on their first 8 characters, we know that either y = x or y and x
are each at least 8 characters long and agree on their first 8 characters. This means that y is equivalent to x

under Rs, that is, that y E [x]R8 •

55. We need first to make the relation symmetric, so we add the pairs (b, a), (e, a), and (e, d). Then we need to

make it transitive, so we add the pairs (b,e), (e,b), (a,a), (b,b), (e,e), (d,d), and (e,e). (In other words,

we formed the transitive closure of the symmetric closure of the original relation.) It happens that we have

already achieved reflexivity, so we are done; if there had been some pairs (x, x) missing at this point, we would

have added them as well. Thus the desired equivalence relation is the one consisting of the original 3 pairs

and the 10 we have added. There are two equivalence classes, {a, b, e} and { d, e}.

57. a) The equivalence class of 1 is the set of all real numbers that differ from 1 by an integer. Obviously this is

the set of all integers.

b) The equivalence class of 1/2 is the set of all real numbers that differ from 1/2 by an integer, namely

1/2, 3/2, 5/2, etc., and -1/2, -3/2, etc. These are often called half-integers. We could write this set as

{ (2n + 1)/2 In E Z}, among other ways.

Section 9.5 Equivalence Relations 335

59. This problem actually deals with a branch of mathematics called group theory; the object being studied here

is related to a certain dihedral group. If this fascinates you, you might want to take a course with a title like
Abstract Algebra or Modern Algebra, in which such things are studied in depth.

In order to have a way to talk about specific colorings, let us agree that a sequence of length four, each

element of which is either r or b, represents a coloring of the 2 x 2 checkerboard, where the first letter denotes

the color of the upper left square, the second letter denotes the color of the upper right square, the third letter
denotes the color of the lower left square, and the fourth letter denotes the color of the lower right square. For
example, the board in which every square is red except the upper right would be represented by rbrr. There

are really only four different rotations, since after the rotation we need to end up with another checkerboard

(and we can assume that the edges of the board are horizontal and vertical). If we rotate our sample coloring

goo clockwise, then we obtain the coloring rrrb; if we rotate it 180°, then we obtain the coloring rrbr; if we
rotate it 270° clockwise (or goo counterclockwise), then we obtain the coloring brrr; and if we rotate it 360°
clockwise (or 0°-i.e., not at all), then we obtain the coloring rbrr itself back. Note also that some colorings

are invariant (i.e., unchanged) under rotations in addition to the 360° one; for example, bbbb is invariant

under all rotations, and brrb is invariant under a 180° rotation. Similarly there are four reflections: around

the center vertical axis of the board, around the center horizontal axis, around the lower-left-to-upper-right
diagonal, and around the lower-right-to-upper-left diagonal. For example, applying the vertical axis reflection
to rrbb yields itself, while applying the lower-left-to-upper-right diagonal reflection results in brbr.

The definition of equivalence for this problem makes the proof rather messy, since both rotations and

reflections are involved, and it is required that we reduce everything to just one or two operations. In fact,

we claim that there are only eight possible motions of this square: clockwise rotations of 0°, goo, 180°, or

270°, and reflections through the vertical, horizontal, lower-left-to-upper-right, and lower-right-to-upper-left
diagonals. To verify this, we must show that the composition of every two of these operations is again an

operation in our list. Below is the "group table" that shows this, where we use the symbols rO, rgo, rl80,
r270, Jv, Jh, Jp, and Jn for these operations, respectively. (The mnemonic is that r stands for "rotation,"

J stands for "flip," and v, h, p, and n stand for "vertical," "horizontal", "positive-sloping,'' and ''negative-

sloping,'' respectively.) It is read just like a multiplication table, with the operation o meaning ''followed by."

For example, if we first perform rgo and then perform J h, then we get the same result as if we had just

performed Jp (try it!).

0 rO rgo rl80 r270 Jv Jh Jp Jn

rO rO rgo rl80 r270 Jv Jh Jp Jn
rgo rgo rl80 r270 rO Jn Jp Jv Jh
rl80 rl80 r270 rO rgo Jh Jv Jn Jp
r270 r270 rO rgo rl80 Jp Jn Jh Jv
Jv Jv Jp Jh Jn rO rl80 rgo r270
Jh Jh Jn f v f p rl80 rO r270 rgo

f p f p Jh Jn Jv r270 rgO rO rl80

Jn Jn Jv Jp Jh rgo r270 rl80 rO

So the result of this computation is that we can consider only these eight moves, and not have to worry about

combinations of them-every combination of moves equals just one of these eight.

a) To show reflexivity, we note that every coloring can be obtained from itself via a 0° rotation. In technical
terms, the 0° rotation is the identity element of our group. To show symmetry, we need to observe that

rotations and reflections have inverses: If C1 comes from C2 via a rotation of n° clockwise, then C2 comes

from C1 via a rotation of n° counterclockwise (or equivalently, via a rotation of (360 - n) 0 clockwise);

and every reflection applied twice brings us back to the position (and therefore coloring) we began with.

336 Chapter 9 Relations

And transitivity follows from the fact that the composition of two of these operations is again one of these

operations.

b) The equivalence classes are represented by colorings that are truly distinct, in the sense of not being

obtainable from each other via these operations. Let us list them. Clearly there is just one coloring using four

red squares, and so just one equivalence class, [rrrr]. Similarly there is only one using four blues, [bbbb]. There
is also just one equivalence class of colorings using three reds and one blue, since no matter which corner the

single blue occupies in such a coloring, we can rotate to put the blue in any other corner. Thus our third and

fourth equivalence classes are [rrrb] and [bbbr]. Note that each of them contains four colorings. (For example,

[rrrb] = {rrrb, rrbr, rbrr, brrr} .) This leaves only the colorings with two reds and two blues to consider. In

every such coloring, either the red squares are adjacent (i.e., share a common edge), such as in bbrr, or they
are not (e.g., brrb). Clearly the red squares are adjacent if and only if the blue ones are, since the only pairs of

nonadjacent squares are (lower-left,upper-right) and (upper-left,lower-right). It is equally clear that there are

only two colorings in which the red squares are not adjacent, namely rbbr and brrb, and they are equivalent

via a 90° rotation (among other transformations). So our fifth equivalence class is [rbbr] = {rbbr,brrb}.
Finally, there is only one more equivalence class, and it contains the remaining four colorings (in which the
two red squares are adjacent and the two blue squares are adjacent), namely { rrbb, brbr, bbrr, rbrb}, since each
of these can be obtained from each of the others by a rotation. In summary we have partitioned the set of

24 = 16 colorings (i.e., r-b strings of length four) into six equivalence classes, two of which have cardinality

one, three of which have cardinality four, and one of which has cardinality two.

One final comment. We saw in the solution to part (b) that only rotations are needed to show the
equivalence of every pair of equivalent colorings using just red and blue. This means that we are actually

dealing with just part of the dihedral group here. If more colors had been used, then we would have needed

to use the reflections as well. A complete discussion would get us into Polya's theory of enumeration, which

is studied in advanced combinatorics classes.

61. It is easier to write down a partition than it is to list the pairs in an equivalence relation, so we will answer

the question using this notation. Let the set be {1, 2, 3}. We want to write down all possible partitions of this

set. One partition is just { {1, 2, 3}}, i.e., having just one set (this corresponds to the equivalence relation in

which every pair of elements are related). At the other extreme, there is the partition {{l }, {2}, {3}}, which
corresponds to the equality relation (each x is related only to itself). The only other way to split up the

elements of this set is into a set with two elements and a set with one element, and there are clearly three ways

to do this, depending on which element we decide to put in the set by itself. Thus we get the partitions (pay

attention to the punctuation!) { {l, 2}, {3}}, { {1, 3}, {2}}, and { {2, 3}, {1}}. If we wished to list the ordered

pairs, we could; for example, the relation corresponding to {{2,3},{l}} is {(2,2),(2,3),(3,2),(3,3),(1,1)}.
We found five partitions, so the answer to the question is 5.

63. We do get an equivalence relation. The issue is whether the relation formed in this way is reflexive, transitive

and symmetric. It is clearly reflexive, since we included all the pairs (a, a) at the outset. It is clearly transitive,

since the last thing we did was to form the transitive closure. It is symmetric by Exercise 23 in Section 9.4.

65. We end up with the relation R that we started with. Two elements are related if they are in the same set

of the partition, but the partition is made up of the equivalence classes of R, so two elements are related

precisely if they are related in R.

67. We make use of Exercise 63. Given the relation R, we first form the reflexive closure R' of R by adding

to R each pair (a, a) that is not already there. Next we form the symmetric closure R" of R', by adding,

for each pair (a, b) E R' the pair (b, a) if it is not already there. Finally we apply Warshall's algorithm (or

Section 9.6 Partial Orderings 337

Algorithm 1) from Section 9.4 to form the transitive closure of R". This is the smallest equivalence relation

containing R.

69. The exercise asks us to compute p(n) for n = 0, 1, 2, ... , 10. In doing this we will use the recurrence relation,

building on what we have already computed (namely p(n - j - 1), noting that n - j - 1 < n), as well as using
(n - 1)!

the binomial coefficients C(n - 1, j) = . (. . We organize our computation in the obvious way. using

the formula in Exercise 68.

p(O) = 1 (the initial condition)

p(l) = C(O, O)p(O) = 1 · 1 = 1

J! n - l - J)!

p(2) = C(l, O)p(l) + C(l, l)p(O) = 1·1+1·1 = 2

p(3) = C(2, O)p(2) + C(2, l)p(l) + C(2, 2)p(O) = 1·2+2·1+1·1 = 5

p(4) = C(3, O)p(3) + C(3, l)p(2) + C(3, 2)p(l) + C(3, 3)p(O) = 1·5 + 3 · 2 + 3 · 1+1·1=15

p(5) = C(4, O)p(4) + C(4, l)p(3) + C(4, 2)p(2) + C(4. 3)p(l) + C(4, 4)p(O)

= 1 . 15 + 4. 5 + 6 . 2 + 4 . 1 + 1 . 1 = 52

p(6) = C(5, O)p(5) + C(5, l)p(4) + C(5, 2)p(3) + C(5, 3)p(2) + C(5, 4)p(l) + C(5, 5)p(O)

= 1 . 52 + 5 . 15 + 10 . 5 + 10 . 2 + 5 . 1 + 1 . 1 = 203

p(7) = C(6, O)p(6) + C(6, l)p(5) + C(6, 2)p(4) + C(6, 3)p(3) + C(6, 4)p(2) + C(6, 5)p(l) + C(6, 6)p(O)

= 1 . 203 + 6 . 52 + 15 . 15 + 20 . 5 + 15 . 2 + 6 . 1 + 1 . 1 = 877

p(8) = C(7, O)p(7) + C(7, l)p(6) + C(7, 2)p(5) + C(7, 3)p(4) + C(7, 4)p(3) + C(7, 5)p(2)

+ C(7, 6)p(l) + C(7, 7)p(O)

= 1 . 877 + 7. 203 + 21 . 52 + 35 . 15 + 35 . 5 + 21 . 2 + 7. 1 + 1 . 1 = 4140

p(9) = C(8, O)p(8) + C(8, l)p(7) + C(8, 2)p(6) + C(8, 3)p(5) + C(8, 4)p(4) + C(8, 5)p(3)

+ C(8, 6)p(2) + C(8, 7)p(l) + C(8, 8)p(O)

= 1 . 4140 + 8. 877 + 28. 203 + 56. 52 + 70. 15 + 56. 5 + 28. 2 + 8. 1+1 . 1 = 21147

p(lO) = C(9, O)p(9) + C(9, l)p(8) + C(9, 2)p(7) + C(9, 3)p(6) + C(9, 4)p(5) + C(9, 5)p(4)

+ C(9, 6)p(3) + C(9, 7)p(2) + C(9, 8)p(l) + C(9, 9)p(O)

= 1 . 21147 + 9. 4140 + 36. 877 + 84. 203 + 126. 52

+ 126 . 15 + 84 . 5 + 36 . 2 + 9 . 1 + 1 . 1 = 115975

SECTION 9.6 Partial Orderings

Partial orderings (or "partial orders"-the two phrases are used interchangeably) rival equivalence relations in

importance in mathematics and computer science. Again, try to concentrate on the visual image-in this case

the Hasse diagram. Play around with different posets to become familiar with the different possibilities; not

all posets have to look like the less than or equal relation on the integers. Exercises 32 and 33 are important,
and they are not difHcult if you pay careful attention to the definitions.

338 Chapter 9 Relations

1. The question in each case is whether the relation is reflexive, antisymmetric, and transitive. Suppose the

relation is called R.

a) Clearly this relation is reflexive because each of 0, 1, 2, and 3 is related to itself. The relation is also

antisymmetric, because the only way for a to be related to b is for a to equal b. Similarly, the relation is
transitive, because if a is related to b, and b is related to c, then necessarily a= b = c so a is related to c

(because the relation is reflexive). This is just the equality relation on {O, 1, 2, 3}; more generally, the equality

relation on any set satisfies all three conditions and is therefore a partial ordering. (It is the smallest partial

ordering; reflexivity insures that every partial ordering contains at least all the pairs (a, a) .)

b) This is not a partial ordering, because although the relation is reflexive, it is not antisymmetric (we have

2 R 3 and 3 R 2, but 2 -=F 3), and not transitive (3 R 2 and 2 R 0, but 3 is not related to 0).

c) This is a partial ordering, because it is clearly reflexive; is antisymmetric (we just need to note that (1, 2)

is the only pair in the relation with unequal components); and is transitive (for the same reason).

d) This is a partial ordering because it is the "less than or equal to" relation on {1, 2, 3} together with the
isolated point 0.

e) This is not a partial ordering. The relation is clearly reflexive, but it is not antisymmetric (0 R 1 and 1 R 0,

but 0 -=F 1) and not transitive (2 R 0 and 0R1, but 2 is not related to 1).

3. The question in each case is whether the relation is reflexive, antisymmetric, and transitive.

a) Since nobody is taller than himself, this relation is not reflexive so (S, R) cannot be a poset.

b) To be not taller means to be exactly the same height or shorter. Two different people x and y could have

the same height, in which case x Ry and y Rx but x -=F y, so R is not antisymmetric and this is not a poset.

c) This is a poset. The equality clause in the definition of R guarantees that R is reflexive. To check

antisymmetry and transitivity it suffices to consider unequal elements (these rules hold for equal elements
trivially). If a is an ancestor of b, then b cannot be an ancestor of a (for one thing, an ancestor needs to be

born before any descendant), so the relation is vacuously antisymmetric. If a is an ancestor of b, and b is an

ancestor of c, then by the way ''ancestor" is defined, we know that a is an ancestor of b; thus R is transitive.

d) This relation is not antisymmetric. Let a and b be any two distinct friends of yours. Then a Rb and

b Ra, but a -=F b.

5. The question in each case is whether the relation is reflexive, antisymmetric, and transitive.

a) The equality relation on any set satisfies all three conditions and is therefore a partial partial ordering.

(It is the smallest partial partial ordering; reflexivity insures that every partial order contains at least all the

pairs (a, a).)

b) This is not a poset, since the relation is not reflexive, not antisymmetric, and not transitive (the absence

of one of these properties would have been enough to give a negative answer).

c) This is a poset, as explained in Example 1.

d) This is not a poset. The relation is not reflexive, since it is not true, for instance, that 2 ,.\'2. (It also is not
antisymmetric and not transitive.)

7. a) This relation is {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 3)}. It is not antisymmetric because (1, 2) and (2, 1)

are both in the relation, but 1 -=F 2. We can see this visually by the pair of 1 's symmetrically placed around

the main diagonal at positions (1, 2) and (2, 1). Therefore this matrix does not represent a partial order.

b) This matrix represents a partial order. Reflexivity is clear. The only other pairs in the relation are (1, 2)

and (1. 3), and clearly neither can be part of a counterexample to antisymmetry or transitivity.

c) A little trial and error shows that this relation is not transitive ((4, 1) and (1, 3) are present, but not (4, 3))

and therefore not a partial order.

Section 9.6 Partial Orderings 339

9. This relation is not transitive (there are arrows from a to b and from b to d, but there is no arrow from a

to d) , so it is not a partial order.

11. This relation is a partial order, since it has all three properties-it is reflexive (there is an arrow at each

point), antisymmetric (there are no pairs of arrows going in opposite directions between two different points),
and transitive (there is no missing arrow from some x to some z when there were arrows from x to y and y

to z).

13. The dual of a poset is the poset with the same underlying set and with the relation defined by declaring a

related to b if and only if b :Sa in the given poset.

a) The dual relation to :S is 2':, so the dual poset is ({O, 1, 2}, :::::) . Explicitly it is the set { (0, 0), (1, 0), (1, 1),

(2,0),(2,1),(2,2)}.

b) The dual relation to 2: is ::; , so the dual poset is (Z, ::;) .
c) The dual relation to ~ is <;;;;, so the dual poset is (P(Z), <;;;;).

d) There is no symbol generally used for the "is a multiple of" relation, which is the dual to the "divides''

relation in this part of the exercise. If we let R be the relation such that aRb if and only if b I a, then the

answer can be written (z+, R).

15. We need to find elements such that the relation holds in neither direction between them. The answers we give

are not the only ones possible.

a) One such pair is { 1} and { 2} . These are both subsets of { 0, 1, 2} , so they are in the poset, but neither is

a subset of the other.

b) Neither 6 nor 8 divides the other, so they are incomparable.

17. We find the first coordinate (from left to right) at which the tuples differ and place first the tuple with the

smaller value in that coordinate.

a) Since 1=1 in the first coordinate, but 1 < 2 in the second coordinate, (1, 1, 2) < (1, 2, 1).

b) The first two coordinates agree, but 2 < 3 in the third, so (0, 1, 2, 3) < (0, 1, 3, 2).

c) Since 0 < 1 in the first coordinate, (0, 1, 1, 1, 0) < (1, 0, 1, 0, 1).

19. All the strings that begin with 0 precede all those that begin with 1. The 0 comes first. Next comes 0001,

which begins with three O's, then 001, which begins with two O's. Among the strings that begin 01, the order

is 01 < 010 < 0101 < 011. Putting this all together, we have 0 < 0001 < 001 < 01 < 010 < 0101 < 011 < 11.

21. This is a totally ordered set, so the Hasse diagram is linear.

15

11

10

5

2

0

23. We put x above y if y divides x. We draw a line between x and y, where y divides x, if there is no number

z in our set, other than x or y, such that y I z /\ z Ix. Note that in part (b) the numbers other than 1 are

all (relatively) prime, so the Hasse diagram is short and wide, whereas in part (d) the numbers all divide one

another, so the Hasse diagram is tall and narrow.

340

8

4

2 7

48

36

2 3

(c)

64

32

16

8

4

2

(d)

Chapter 9 Relations

25. We need to include every pair (x,y) for which we can find a path going upward in the diagram from x toy.
We also need to include all the reflexive pairs (x, x). Therefore the relation is the following set of pairs:
{(a,a), (a,b),(a,c), (a,d). (b,b),(b,c),(b,d),(c,c),(d,d)}.

27. The procedure is the same as in Exercise 25: {(a,a),(a,d),(a,e),(a,f),(a,g),(b,b),(b,d),(b,e),(b,f),(b,g),
(c,c),(c,d),(c,e), (c,f),(c,g),(d,d),(e,e),(f,f),(g,d),(g,e), (g,f),(g,g)}.

29. In this problem X ~ Y when X <:;;; Y. For (X, Y) to be in the covering relation, we need X to be a proper
subset of Y but we also must have no subset strictly between X and Y. For example, ({a}, {a, b, c}) is

not in the covering relation, since {a} C {a, b} and {a, b} C {a, b, c}. With this understanding it is easy to

list the pairs in the covering relation: (0,{a}), (0,{b}), (0,{c}), ({a},{a,b}), ({a},{a,c}), ({b},{a,b}),
({b}, {b, c}), ({c}, {a, c}), ({c}, {b, c}), ({a, b}, {a, b, c}), ({a, c}, {a, b, c}), and ({b, c}, {a, b, c}).

31. Let (S, j) be a finite poset. We claim that this poset is just the reflexive transitive closure of its covering

relation. Suppose that (a, b) is in the reflexive transitive closure of the covering relation. Then either a = b
or a -< b (in which cases certainly a j b) or else there is a sequence a -< a 1 -< a2 -< · · · -< an -< b, in which

case again a ~ b, by the transitivity of ~. Conversely, suppose that a ~ b. If a = b, then (a, b) is certainly

in the reflexive transitive closure of the covering relation. If a -< b and there is no z such that a -< z -< b,

then (a, b,) is in the covering relation and again therefore in its reflexive transitive closure. Otherwise, let

a -< a 1 -< a2 -< · · · -< an -< b be a longest possible sequence of this form; since the poset is finite, there must
be such a longest sequence. Then no intermediate elements can be inserted into this sequence (to do so would

lengthen it), so each pair (a,a 1), (a1 ,a2), ... , (an,b) is in the covering relation, so again (a,b) is in its

reflexive transitive closure. This completes the proof. Note how the finiteness of the poset was crucial here. If

we let S be the set of all subsets of N (the set of natural numbers) under the subset relation, then we cannot

recover S from its covering relation, since nothing in the covering relation allows us to relate a finite set to

an infinite one; thus for example we could not recover the relationship {1, 2} C N.

33. It is helpful in this exercise to draw the Hasse diagram.

a) Maximal elements are those that do not divide any other elements of the set. In this case 24 and 45 are

the only numbers that meet that requirement.

b) Minimal elements are those that are not divisible by any other elements of the set. In this case 3 and 5

are the only numbers that meet that requirement.

Section 9.6 Partial Orderings 341

c) A greatest element would be one that all the other elements divide. The only two candidates (maximal

elements) are 24 and 45, and since neither divides the other, we conclude that there is no greatest element.

d) A least element would be one that divides all the other elements. The only two candidates (minimal
elements) are 3 and 5, and since neither divides the other, we conclude that there is no least element.

e) We want to find all elements that both 3 and 5 divide. Clearly only 15 and 45 meet this requirement.

f) The least upper bound is 15 since it divides 45 (see part (e)).

g) We want to find all elements that divide both 15 and 45. Clearly only 3, 5, and 15 meet this requirement.

h) The number 15 is the greatest lower bound, since both 3 and 5 divide it (see part (g)).

35. To help us answer the questions, we will draw the Hasse diagram, with the commas and braces eliminated in

the labels, for readability.

234

12 34

4

a) The maximal elements are the ones without any elements lying above them in the Hasse diagram, namely

{1,2}, {1,3,4}, and {2,3,4}.

b) The minimal elements are the ones without any elements lying below them in the Hasse diagram, namely

{ 1} , { 2} , and { 4} .

c) There is no greatest element, since there is more than one maximal element, none of which is greater than

the others.

d) There is no least element, since there is more than one minimal element, none of which is less than the

others.

e) The upper bounds are the sets containing both { 2} and { 4} as subsets, i.e., the sets containing both 2

and 4 as elements. Pictorially, these are the elements lying above both { 2} and { 4} (in the sense of there

being a path in the diagram), namely {2,4} and {2,3,4}.

f) The least upper bound is an upper bound that is less than every other upper bound. We found the upper

bounds in part (e), and since {2,4} is less than (i.e., a subset of) {2,3,4}, we conclude that {2,4} is the

least upper bound.

g) To be a lower bound of both {l, 3, 4} and {2, 3, 4}, a set must be a subset of each, and so must be a subset

of their intersection, {3, 4}. There are only two such subsets in our poset, namely {3, 4} and { 4}. In the

diagram, these are the points which lie below (in the path sense) both {1,3,4} and {2,3,4}.

h) The greatest lower bound is a lower bound that is greater than every other lower bound. We found the

lower bounds in part (g), and since {3,4} is greater than (i.e., a superset of) {4}, we conclude that {3,4} is

the greatest lower bound.

37. First we need to show that lexicographic order is reflexive, i.e., that (a, b) ::5 (a, b); this is true by fiat, since we

defined ::5 by adding equality to -<. Next we need to show antisymmetry: if (a, b) ::5 (c, d) and (a, b) =/=- (c, d),
then (c, d) f._ (a, b). By definition (a, b) -< (c, d) if and only if either a -< c, or a = c and b -< d. In the first

case, by the antisymmetry of the underlying relation, we know that c /, a, and similarly in the second case

we know that d /, d. Thus there is no way that we could have (c, d) -< (a, b) . Finally, for transitivity, let

(a, b) ::5 (c, d) ::5 (e, J). We want to show that (a, b) ::5 (e, J). If one of the given inequalities is an equality,

then there is nothing to prove, so we may assume that (a, b) -< (c, d) -< (e, !) . If a -< c, then by the transitivity

of the underlying relation, we know that a -< e and so (a, b) -< (e, f). Similarly, if c -< e, then again a -< e

342 Chapter 9 Relations

and so (a, b) --< (e, f). The only other way for the given inequalities to hold is if a= c = e and b--< d--< f. In
this case the latter string of inequalities implies that b --< f and so again by definition (a, b) --< (e, f).

39. First we must show that :::5 is reflexive. Since s :::5 1 s and t :::5 2 t by the reflexivity of these underlying

partial orders, (s, t) :::5 (s, t) by definition. For antisymmetry, assume that (s, t) :::5 (u, v) and (u, v) :::5 (s, t) .
Then by definition s :::5 1 u and t :::5 2 v, and u :::51 s and v :::5 2 t. By the antisymmetry of the underlying

relations, we conclude that s = u and t = v, whence (s, t) = (u, v) . Finally, for transitivity, suppose that

(s,t) :::S (u,v) :::5 (w,x). This means thats :::51 u :::51 wand t :::52 v :::52 x. The transitivity of the underlying

partial orders tells us thats :::5 1 wand t :::52 x, whence by definition (s,t) :::5 (w,x).

41. a) We argue essentially by contradiction. Suppose that m 1 and m 2 are two maximal elements in a poset that

has a greatest element g; we will show that m 1 = m 2. Now since g is greatest, we know that m 1 :::S g, and

similarly for m2. But since each m, is maximal, it cannot be that m, --< g; hence m 1 = g = m2.

b) The proof is exactly dual to the proof in part (a), so we just copy over that proof, making the appropriate

changes in wording. To wit: we argue essentially by contradiction. Suppose that m 1 and m 2 are two minimal

elements in a poset that has a least element l; we will show that m 1 = m 2 . Now since l is least, we know that

l :::5 m1, and similarly for m2. But since each m, is minimal, it cannot be that l --< m,; hence m1 = l = m 2.

43. In each case, we need to check whether every pair of elements has both a least upper bound and a greatest

lower bound.

a) This is a lattice. If we want to find the l.u.b. or g.l.b. of two elements in the same vertical column of the

Hasse diagram, then we simply take the higher or lower (respectively) element. If the elements are in different

columns, then to find the g.l.b. we follow the diagonal line upward from the element on the left, and then

continue upward on the right, if necessary to reach the element on the right. For example, the l.u.b. of d and

c is f; and the l.u.b. of a and e is e. Finding greatest lower bounds in this poset is similar.

b) This is not a lattice. Elements b and c have f, g, and h as upper bounds, but none of them is a l.u.b.

c) This is a lattice. By considering all the pairs of elements, we can verify that every pair of them has a l.u.b.

and a g.l.b. For example, b and e have g and a filling these roles, respectively.

45. As usual when trying to extend a theorem from two items to an arbitrary finite number, we will use mathe

matical induction. The statement we wish to prove is that if S is a subset consisting of n elements from a

lattice, where n is a positive integer, then S has a least upper bound and a greatest lower bound. The two

proofs are duals of each other, so we will just give the proof for least upper bound here. The basis is n = 1,

in which case there is really nothing to prove. If S = { x}, then clearly x is the least upper bound of S. The

case n = 2 could be singled out for special mention also, since the l.u.b. in that case is guaranteed by the

definition of lattice. But there is no need to do so. Instead, we simply assume the inductive hypothesis, that

every subset containing n elements has a 1.u.b., and prove that every subset S containing n + 1 elements also

has a l.u.b. Pick an arbitrary element x ES, and let S' = S - {x}. Since S' has only n elements, it has a

l.u.b. y, by the inductive hypothesis. Since we are in a lattice, there is an element z that is the l.u.b. of x

and y. We will show that in fact z is the least upper bound of S. To do this, we need to show two things:

that z is an upper bound, and that every upper bound is greater than or equal to z. For the first statement,

let w be an arbitrary element of S; we must show that w :::5 z. There are two cases. If w = x, then w :::5 z

since z is the l.u.b. of :r and y. Otherwise, w E S', and so w :::S y because y is the l.u.b. of S'. But since z

is the l.u.b. of x and y, we also have y :::5 z. By transitivity, then, w :::S z. For the second statement, suppose

that u is any other upper bound of S; we must show that z :::5 u. Since u is an upper bound of S, it is also

an upper bound of x and y. But since z is the least upper bound of x and y, we know that z :::5 u.

47. The needed definitions are in Example 25.

Section 9.6 Partial Orderings 343

a) No. The authority level of the first pair (1) is less than or equal to (less than, in this case) that of the

second (2); but the subset of the first pair is not a subset of that of the second.

b) Yes. The authority level of the first pair (2) is less than or equal to (less than, in this case) that of the

second (3); and the subset of the first pair is a subset of that of the second.

c) The classes into which information can flow are those classes whose authority level is at least as high as

Proprietary, and whose subset is a superset of {Cheetah, Puma}. We can list these classes: (Proprietary,
{Cheetah, Puma}), (Restricted, {Cheetah, Puma}), (Registered, {Cheetah, Puma}), (Proprietary, {Cheetah,
Puma, Impala}), (Restricted, {Cheetah, Puma, Impala}), and (Registered, {Cheetah, Puma, Impala}).

d) The classes from which information can flow are those classes whose authority level is at least as low

as Restricted, and whose subset is a subset of {Impala, Puma}, namely (Nonproprietary,{Impala,Puma}),

(Proprietary, {Impala,Puma}), (Restricted, { Impala,Puma}), (Nonproprietary, {Impala}), (Proprietary,
{Impala}) , (Restricted, {Impala}) , (Non proprietary, {Puma}) , (Proprietary, {Puma}) , (Restricted, {Puma}) ,

(Nonproprietary,0), (Proprietary,0), and (Restricted,0).

49. Let II be the set of all partitions of a set S, with a relation :::S defined on II according to the referenced

preamble: a partition P1 is a refinement of P2 if every set in P1 is a subset of one of the sets in P2 . We
need to verify all the properties of a lattice. First we need to show that (II, :::S) is a poset, that is, that :::S is

reflexive, antisymmetric, and transitive. For reflexivity, we need to show that P :::S P for every partition P.

This means that every set in P is a subset of one of the sets in P, and this is trivially true, since every set is

a subset of itself. For antisymmetry, suppose that P1 :::S P2 and P2 :::S Pi . We must show that P 1 = P2. By

the equivalent roles played here by P1 and P2 , it is enough to show that every T E P1 (where T <;;;: S) is also

an element of P2. Suppose we have such a T. Then since P 1 :::S P2 , there is a set T' E P2 such that T <;;;: T'.

But then since P2 :::S P 1 , there is a set T" E P1 such that T' <;;;: T". Putting these together, we have T <;;;: T".

But P1 is a partition, and so the elements of P1 are nonempty and pairwise disjoint. The only way for this to

happen if one is a subset of the other is for the two subsets T and T" to be the same. But this implies that

T' (which is caught in the middle) is also equal to T. Thus TE P2 , which is what we were trying to show.

Finally, for transitivity, suppose that P1 :::S P2 and P2 :::S P3 . We must show that P1 :::S P3 . To this end, we

take an arbitrary element T E P1 . Then there is a set T' E P2 such that T <;;;: T'. But then since P2 :::S P3 ,

there is a set T" E P3 such that T' <;;;: T". Putting these together, we have T <;;;: T". This demonstrates that

P1 :::S P3.

Next we have to show that every two partitions Pi and P2 have a least upper bound and a greatest
lower bound in II. We will show that their greatest lower bound is their "coarsest common refinement",

namely the partition P whose subsets are all the nonempty sets of the form T1 n T2 , where T1 E P1 and

T2 E P2. As an example, if P1 = { {1, 2, 3}, { 4}, {5}} and P2 = { {1, 2}, {3, 4}, {5}}, then the coarsest common

refinement is P = { {1, 2}, {3}, {4}, {5}}. First, we need to check that this is a partition. It certainly is a set

of nonempty subsets of S. It is pairwise disjoint, because the only way an element could be in T1 n T2 n T{ n T~
if T1 n T2 -=/:. T{ n T~ is for that element to be in both T1 n T{ and T2 n T~ , which means that T1 = T{ and
T2 = T~ , a contradiction. And it covers all of S, because if x E S, then x E T1 for some T1 E P1 , and x E T2
for some T2 E P2, and so x E T1 n T2 E P. Second, we need to check that P is a refinement of both P1

and P2 . So suppose T E P. Then T = T1 n T2 , for some T 1 E P1 and T2 E P2 . It follows that T <;;;: T1

and T <;;;: T2. But then T1 and T2 satisfy the requirements in the definition of refinement. Third, we need to

check that if P' is any other common refinement of both P 1 and P2 , then P' is also a refinement of P. To

this end, suppose that T E P'. Then by definition of refinement, there are subsets T1 E P 1 and T2 E P2 such

that T <;;;: T1 and T <;;;: T2. Therefore T <;;;: T1 n T2 . But T 1 n T2 E P, and our proof for greatest lower bounds

is complete.

It's a little harder to state the definition of the least upper bound (which again we'll call P) of two given
partitions P1 and P2 . Essentially it is just the set of all minimal nonempty subsets of S that do not "split

344 Chapter 9 Relations

apart'' any element of either P1 or P2 . (In the example above, it is {{1, 2, 3, 4}, {5}} .) It will be a little

easier if we define it in terms of an equivalence relation rather than a partition. Note that from this point of

view, one equivalence relation is a refinement of a second equivalence relation if whenever two elements are

related by the first relation, then they are related by the second. The equivalence relation determining P is

the relation in which x E S is related to y E S if there is a "path" (a sequence) x = x0 , x 1 , x 2 , ... , Xn = y,

for some n ?: 0, such that for each i from 1 to n, Xi-1 and Xi are in the same element of partition P1 or of

partition P2 (in other words, x,_ 1 and x, are related either by the equivalence relation corresponding to P1

or by that corresponding to P2). It is clear that this is an equivalence relation: it is reflexive by taking n = 0;

it is symmetric by following the path backwards; and it is transitive by composing paths. It is also clear that

P1 (and P2 similarly) is a refinement of this partition, since if two elements of S are in the same equivalence
class in P1 , then we can take n = 1 in our path definition to see that they are in the same equivalence class

in P. Thus P is an upper bound of both P1 and P2 . Finally, we must show that P is the least upper bound,

that is, a refinement of every other upper bound. This is clear from our construction: we only forced two

elements of S to be related (i.e., in the same class of the partition) when they had to be related in order to

enable P1 and P2 to be refinements. Therefore if two elements are related by P, then they have to be related
by every equivalence relation (partition) Q of which both P1 and P2 are refinements; so P is a refinement

of Q.

51. This follows immediately from Exercise 45. To be more specific, according to Exercise 45, there is a least
upper bound (respectively, a greatest lower bound) for the entire finite lattice. This element is by definition
a greatest element (respectively, a least element).

53. We need to show that every nonempty subset of z+ x z+ has a least element under lexicographic order.

Given such a subset S, look at the set S1 of positive integers that occur as first coordinates in elements of S.
Let m 1 be the least element of S1 , which exists since z+ is well-ordered under :::; . Let S' be the subset of
S consisting of those pairs that have m1 as their first coordinate. Thus S' is clearly nonempty, and by the

definition of lexicographic order, every element of S' is less than every element in S - S'. Now let 82 be the

set of positive integers that occur as second coordinates in elements of S', and let m2 be the least element of

S2 . Then clearly the element (m1, m2) is the least element of S' and hence is the least element of S.

55. If x is an integer in a decreasing sequence of elements of this poset, then at most \x\ elements can follow x in

the sequence, namely integers whose absolute values are \xi - 1, \xi - 2, ... , 1, 0. Therefore there can be no

infinite decreasing sequence. This is not a totally ordered set, since 5 and -5, for example, are incomparable;

from the definition given here, it is neither true that 5 -< -5 nor that -5 -< 5, because neither one of \5\ or
\ - 51 is less than the other (they are equal).

57. We know from elementary arithmetic that Q is totally ordered by <, and so perforce it is a partially ordered

set. To be precise, to find which of two rational numbers is larger, write them with a positive common

denominator and compare numerators. To show that this set is dense, suppose x < y are two rational

numbers. Let z be their average, i.e., (x + y) /2. Since the set of rational numbers is closed under addition

and division, z is also a rational number, and it is easy to show that x < z < y.

59. Let (S, ::S) be a partially ordered set. From the definitions of well-ordered, totally ordered, and well-founded,

it is clear that what we have to show is that every nonempty subset of S contains a least element if and only

if there is no infinite decreasing sequence of elements a1, a2, a3 , ... in S (i.e., where a,+l -<a, for all i). One
direction is clear: An infinite decreasing sequence of elements has no least element. Conversely, let A be any

nonempty subset of S that has no least element. Since A is nonempty, let a1 be any element of A. Since a 1

is not the least element of A, there is some a2 E A smaller than a1, i.e., a2 -< a1. Since a2 is not the least

Review Questions 345

element of A, A must contain an element a3 with a3 -< a 2 . We continue in this manner, giving us an infinite

decreasing sequence in S. Note that this proof is nonconstructive; it uses what set theorists call the Axiom

of Choice.

61. We need to peel elements off the bottom of the Hasse diagram. We can begin with a, b, or c. Suppose we

decide to start with a. Next we may choose any minimal element of what remains after we have removed a;

only b and c meet this requirement. Suppose we choose b next. Then c, d, and e are minimal elements in
what remains, so any of those can come next. We continue in this manner until we have listed and removed

all the elements. One possible order, then, is a -<t b -<t d -<t e -<t c -<t f -<t g -<t h -<t i -<t j -<t k -<t m -<t l.

63. Clearly 1 must come first, and 20 must follow each element except possibly 12. The relative positions of

2, 4, and 12 are fixed. The 5 can go anywhere, as long as it lies between 1 and 20. Following these
guidelines, we see that the following seven total orderings are the ones compatible with the given relation:

1 -< 5 -< 2 -< 4 -< 12 -< 20' 1 -< 2 -< 5 -< 4 -< 12 -< 20' 1 -< 2 -< 4 -< 5 -< 12 -< 20' 1 -< 2 -< 4 -< 12 -< 5 -< 20'

1 -< 5 -< 2 -< 4 -< 20 -< 12' 1 -< 2 -< 5 -< 4 -< 20 -< 12' 1 -< 2 -< 4 -< 5 -< 20 -< 12.

65. There are a few restrictions, but there are many choices, so we will get many (18) compatible total orderings.
Note that A and C must precede B; B and E must precede F; B must precede D; and G must come last.

We can therefore make the following list: A -< C -< E -< B -< D -< F -< G, A -< E -< C -< B -< D -< F -< G,

C-< A-< E-< B-< D-< F-< G, C-< E-< A-< B-< D-< F-< G, E-< A-< C-< B-< D-< F-< G,
E-< C-< A-< B-< D-< F-< G, A-< C-< B-< E-< D-< F-< G, C-< A-< B-< E-< D-< F-< G,
A-< C-< B-< D-< E-< F-< G, C-< A-< B-< D-< E-< F-< G, A-< C-< E-< B-< F-< D-< G,
A -< E -< C -< B -< F -< D -< G, C-< A-< E -< B -< F -< D -< G, C -< E -< A -< B -< F -< D -< G,
E -< A -< C -< B -< F -< D -< G, E -< C -< A -< B -< F -< D -< G, A -< C -< B -< E -< F -< D -< G, and

C-<A-<B -<E-<F -<D -<G.

67. We need to find a total order compatible with this partial order. We work from the bottom up, writing down

a task (vertex in the diagram) and removing it from the diagram, so that at each stage we choose a vertex

with no vertices below it. One such order is: Determine user needs -< Write functional requirements -< Set up

test sites -< Develop system requirements -< Develop module A -< Develop module C -< Develop module B
-< Write documentation -< Integrate modules -< a test -< (3 test -< Completion.

GUIDE TO REVIEW QUESTIONS FOR CHAPTER 9

1. a) See p. 575 (which refers to the definition on p. 573). b) See Example 6 in Section 9.1.

2. a) See p. 576. b) Seep. 577. c) Seep. 577. d) See p. 578.

3. a) {(1, 1), (1,2),(2,1),(2,2),(2,3),(3,2), (3,3), (4,4)}

b) 0 c) {(1,1),(1,2),(2,2),(2,3),(3,3),(4,4)}

d) {(1,1),(2,2),(3,3),(4,4)} e) {(1, 1), (2,2),(3,3),(4,4)}

4. a) See Example 16 in Section 9.1.

c) See Exercise 47b in Section 9.1.

b) See Exercise 47a in Section 9.1.

5. a) See pp. 584-585. b) Take the projection P1,4,5.

c) First rearrange the order of the fields in the relations, so that the first is in the order address, telephone
number, name, major, and the second is in the order name, major, student number, number of credit hours.

Then form the join h, to get a single relation with the fields in the order address, telephone number, name,

major, student number, number of credit hours. Finally, if desired, rearrange the fields to a more natural

order.

352

CHAPTERlO
Graphs

Chapter 10 Graphs

SECTION 10.1 Graphs and Graph Models

The examples and exercises give a good picture of the ways in which graphs can model various real world

applications. In constructing graph models you need to determine what the vertices will represent, what the
edges will represent, whether the edges will be directed or undirected, whether loops should be allowed, and
whether a simple graph or multigraph is more appropriate.

1. In part (a) we have a simple graph, with undirected edges, no loops or multiple edges. In part (b) we have a

multigraph, since there are multiple edges (making the figure somewhat less than ideal visually). In part (c) we

have the same picture as in part (b) except that there is now a loop at one vertex; thus this is a pseudograph.

Boston Boston Boston

Miami

(a) (b) (c)

In part (d) we have a directed graph, the directions of the edges telling the directions of the flights; note that

the anti parallel edges (pairs of the form (u, v) and (v, u)) are not parallel. In part (e) we have a directed

multigraph, since there are parallel edges.

Boston

Miami Miami

(d) (e)

3. This is a simple graph; the edges are undirected, and there are no parallel edges or loops.

5. This is a pseudograph; the edges are undirected, but there are loops and parallel edges.

7. This is a directed graph; the edges are directed, but there are no parallel edges. (Loops and antiparallel

edges-see the solution to Exercise ld for a definition-are allowed in a directed graph.)

9. This is a directed multigraph; the edges are directed, and there is a set of parallel edges.

Section 10.1 Graphs and Graph Models 353

11. In a simple graph, edges are undirected. To show that R is symmetric we must show that if uRv, then vRu.
If uRv, then there is an edge associated with { u, v}. But { u, v} = { v, u}, so this edge is associated with

{ v, u} and therefore vRu. A simple graph does not allow loops; that is if there is an edge associated with

{ u, v}, then u f= v. Thus uRu never holds, and so by definition R is irreflexive.

13. In each case we draw a picture of the graph in question. All are simple graphs. An edge is drawn between two
vertices if the sets for the two vertices have at least one element in common. For example, in part (a) there
is an edge between vertices A 1 and A2 because there is at least one element common to A1 and A2 (in fact

there are three such elements). There is no edge between Ai and A3 since Ai n A3 = 0.

~
A4~A1

A5 A5

(b) (c)

15. We draw a picture of the graph in question, which is a simple graph. Two vertices are joined by an edge if
we are told that the species compete (such as robin and mockingbird) but there is no edge between pairs of

species that are not given as competitors (such as robin and blue jay).

robin~lue Jf:lY

hermit thrush r "'\mockingbird

nuthf:ltch .___... hf:ll ry woodpecker

17. Here are the persons to be included, listed in order of birth year: Aristotle (384-322 B.C.E.), Euclid (325-265
B.C.E.), Eratosthenes (276-194 B.C.E.), al-Khowarizmi (780-850), Fibonacci (1170-1250), Maurolico (1494-
1575), Mersenne (1588-1648), Descartes (1596-1650), Fermat (1601-1665), Goldbach (1690-1764), Stirling

(1692-1770), Bezout (1730-1783), Gauss (1777-1855), Lame (1795-1870), De Morgan (1806-1871), Lovelace

(1815-1852), Boole (1815-1864), and Dodgson (1832-1898). We draw the graph by connecting two people if

their date ranges overlap. Note that there is a complete subgraph (see Section 10.2) consisting of the last six

people listed. A few of the vertices are isolated (again see Section 10.2). In all our graph has 17 vertices and

22 edges. A graph like this is called an interval graph, since each vertex can be associated with an interval

of real numbers; it is a special case of an intersection graph, where two vertices are adjacent if the sets

associated with those vertices have a nonempty intersection (see Exercise 13).

Fermat~escartes

Mersenne

De Morgan

Aristotle Euclid Eratosthenes

•
Fibonacci •

Maurolico

•
al-Khowarizmi

Lame Goldbach

Bezout

Gauss

Dodgson

Boole

354 Chapter 10 Graphs

19. We draw a picture of the graph in question, which is a directed graph. We draw an edge from u to v if we

are told that u can influence v. For instance the Chief Financial Officer is an isolated vertex since she is

influenced by no one and influences no one.

Chief Fin. Off
•

D.c Opers.~Pros.

Dir Mrkt. Dir R&D

21. We draw a picture of the graph in question, which is a directed graph. We draw an edge from u to v if we
are told that u beat v.

Tigers,~lue Jays

Orioles~Card1nals
23. We could compile a list of phone numbers (the labels on the vertices) in the February call graph that were

not present in January, and a list of the January numbers missing in February. For each number in each list,

we could make a list of the numbers they called or were called by, using the edges in the call graphs. Then we
could look for February lists that were very similar to January lists. If we found a new February number that
had almost the same calling pattern as a defunct January number, then we might suspect that these numbers

belonged to the same person, who had recently changed his or her number.

25. For each e-mail address (the labels on the vertices), we could make a list of the other addresses they sent
messages to or received messages from. If we see two addresses that had almost the same communication
pattern, then we might suspect that these addresses belonged to the same person, who had recently changed

his or her e-mail address.

27. The vertices represent the people at the party. Because it is possible that a knows b's name but not vice
versa, we need a directed graph. We will include an edge associated with (u, v) if and only if u knows v's

name. There is no need for multiple edges (either a knows b's name or he doesn't). One could argue that

we should not clutter the model with loops, because obviously everyone knows her own name. On the other

hand, it certainly would not be wrong to include loops, especially if we took the instructions literally.

29. We should use a directed graph, with the vertices being the courses and the edges showing the prerequisite
relationship. Specifically, an edge from u to v means that course u is a prerequisite for course v. Courses

that do not have any prerequisites are the courses with in-degree 0, and courses that are not the prerequisite

for any other courses have out-degree 0. An interesting question would be how to model courses that are

co-requisites (in two different senses-either courses u and v must be taken at the same time, or course u

must be taken before course v or in the same semester as course v).

31. For this to be interesting, we want the graph to model all marriages, not just ones that are currently active.

(In the latter case, for the Western world, there would be at most one edge incident to each vertex.) So we

let the set of vertices be a set of people (for example, all the people in North America who lived at any point

in the 20th century), and two vertices are joined by an edge if the two people were ever married. Since laws

in the 20th century allowed only marriages between persons of the opposite sex, and ignoring complications

caused by sex-change operations, we note that this graph has the property that there are two types of vertices

(men and women), and every edge joins vertices of opposite types. In the next section we learn that the word

used to describe a graph like this is bipartite.

Section 10.2 Graph Terminology and Special Types of Graphs 355

33. We draw a picture of the directed graph in question. There is an edge from u to v if the assignment made

in u can possibly influence the assignment made in v. For example, there is an edge from S3 to S6 , since

the assignment in S3 changes the value of y, which then influences the value of z (in S4) and hence has a
bearing on 86 . We assume that the statements are to be executed in the given order, so, for example, we do

not draw an edge from 85 to 82.

35. The vertices in the directed graph represent people in the group. We put a directed edge into our directed

graph from every vertex A to every vertex B =/=- A (we do not need loops), and furthermore we label that edge

with one of the three labels L, D, or N . Let us see how to incorporate this into the mathematical definition.

Let us call such a thing a directed graph with labeled edges. It is defined to be a triple (V, E, f), where (V, E)
is a directed graph (i.e., V is a set of vertices and E is a set of ordered pairs of elements of V) and f is a

function from E to the set { L, D, N}. Here we are simply thinking of f (e) as the attitude of the person at

the tail (initial vertex-see Section 10.2) of e toward the person at the head (terminal vertex) of e.

SECTION 10.2 Graph Terminology and Special Types of Graphs

Graph theory is sometimes jokingly called the "theory of definitions," because so many terms can be--and
have been-defined for graphs. A few of the most important concepts are given in this section; others appear

in the rest of this chapter and the next, in the exposition and in the exercises. As usual with definitions,

it is important to understand exactly what they are saying. You should construct some examples for each

definition you encounter-examples both of the thing being defined and of its absence. Some students find it

useful to build a dictionary as they read, including their examples along with the formal definitions.

The handshaking theorem (that the sum of the degrees of the vertices in a graph equals twice the number

of edges), although trivial to prove, is quite handy, as Exercise 55, for example, i1lustrates. Be sure to look

at Exercise 43, which deals with the problem of when a sequence of numbers can possibly be the degrees of

the vertices of a simple graph. Some interesting subtleties arise there, as you will discover when you try to

draw the graphs. Many arguments in graph theory tend to be rather ad hoc, really getting down to the nitty

gritty, and Exercise 43c is a good example. Exercise 51 is really a combinatorial problem; such problems

abound in graph theory, and entire books have been written on counting graphs of various types. The notion

of complementary graph, introduced in Exercise 59, will appear again later in this chapter, so it would be

wise to look at the exercises dealing with it.

1. There are 6 vertices here, and 6 edges. The degree of each vertex is the number of edges incident to it.

Thus deg(a) = 2, deg(b) = 4, deg(c) = 1 (and hence c is pendant), deg(d) = 0 (and hence d is isolated),

deg(e) = 2, and deg(!)= 3. Note that the sum of the degrees is 2 + 4 + 1+0 + 2 + 3 = 12, which is twice

the number of edges.

3. There are 9 vertices here, and 12 edges. The degree of each vertex is the number of edges incident to it.
Thus deg(a) = 3, deg(b) = 2, deg(c) = 4, deg(d) = 0 (and hence dis isolated), deg(e) = 6, deg(!) = 0

(and hence f is isolated), deg(g) = 4, deg(h) = 2, and deg(i) = 3. Note that the sum of the degrees is

3 + 2 + 4 + 0 + 6 + 0 + 4 + 2 + 3 = 24, which is twice the number of edges.

356 Chapter 10 Graphs

5. By Theorem 2 the number of vertices of odd degree must be even. Hence there cannot be a graph with 15

vertices of odd degree 5. (We assume that the problem was meant to imply that the graph contained only
these 15 vertices.)

7. This directed graph has 4 vertices and 7 edges. The in-degree of vertex a is deg- (a) = 3 since there are

3 edges with a as their terminal vertex; its out-degree is deg+ (a) = 1 since only the loop has a as its
initial vertex. Similarly we have deg-(b) = 1, deg+(b) = 2, deg-(c) = 2, deg+(c) = 1, deg-(d) = 1, and
deg+ (d) = 3 . As a check we see that the sum of the in-degrees and the sum of the out-degrees are equal (both

are equal to 7).

9. This directed multigraph has 5 vertices and 13 edges. The in-degree of vertex a is deg- (a) = 6 since there
are 6 edges with a as their terminal vertex; its out-degree is deg+(a) = 1. Similarly we have deg-(b) = 1,

deg+(b) = 5, deg-(c) = 2, deg+(c) = 5, deg-(d) = 4, deg+(d) = 2, deg-(e) = 0, and deg+(e) = 0 (vertex e

is isolated). As a check we see that the sum of the in-degrees and the sum of the out-degrees are both equal

to the number of edges (13).

11. To form the underlying undirected graph we simply take all the arrows off the edges. Thus, for example, the
edges from e to d and from d to e become a pair of parallel edges between e and d.

•f

13. Since a person is joined by an edge to each of his or her collaborators, the degree of v is the number of

collaborators v has. Similarly, the neighborhood of a vertex is the set of coauthors of the person represented
by that vertex. An isolated vertex represents a person who has no coauthors (he or she has published only

single-authored papers), and a pendant vertex represents a person who has published with just one other

person.

15. Since there is a directed edge from u to v for each call made by u to v, the in-degree of v is the number

of calls v received, and the out-degree of u is the number of calls u made. The degree of a vertex in the

undirected version is just the sum of these, which is therefore the number of calls the vertex was involved in.

17. Since there is a directed edge from u to v to represent the event that u beat v when they played, the in-degree

of v must be the number of teams that beat v, and the out-degree of u must be the number of teams that u

beat. In other words, the pair (deg+(v),deg-(v)) is the win-loss record of v.

19. Model the friendship relation with a simple undirected graph in which the vertices are people in the group,

and two vertices are adjacent if those two people are friends. The degree of a vertex is the number of friends

in the group that person has. By Exercise 18, there are two vertices with the same degree, which means that
there are two people in the group with the same number of friends in the group.

21. To show that this graph is bipartite we can exhibit the parts and note that indeed every edge joins vertices

in different parts. Take { e} to be one part and {a, b, c, d} to be the other (in fact there is no choice in the

matter). Each edge joins a vertex in one part to a vertex in the other. This graph is the complete bipartite

graph K 1,4 .

Section 10.2 Graph Terminology and Special Types of Graphs 357

23. To show that a graph is not bipartite we must give a proof that there is no possible way to specify the parts.

(There is another good way to characterize nonbipartite graphs, but it takes some notions not introduced until

Section 10.4.) We can show that this graph is not bipartite by the pigeonhole principle. Consider the vertices

b, c, and f. They form a triangle~each is joined by an edge to the other two. By the pigeonhole principle,
at least two of them must be in the same part of any proposed bipartition. Therefore there would be an edge
joining two vertices in the same part, a contradiction to the definition of a bipartite graph. Thus this graph

is not bipartite.

An alternative way to look at this is given by Theorem 4. Because of the triangle, it is impossible to color

the vertices to satisfy the condition given there.

25. As in Exercise 23, we can show that this graph is not bipartite by looking at a triangle, in this case the triangle

formed by vertices b, d, and e. Each of these vertices is joined by an edge to the other two. By the pigeonhole

principle, at least two of them must be in the same part of any proposed bipartition. Therefore there would

be an edge joining two vertices in the same part, a contradiction to the definition of a bipartite graph. Thus

this graph is not bipartite.

27. a) The bipartite graph has vertices h, s, n, and w representing the support areas and P, Q, R, and S

representing the employees. The qualifications are modeled by the bipartite graph with edges Ph, Pn, Pw,

Qs, Qn, Rn, Rw, Sh, and Ss.

b) Since every vertex representing an area has degree at least 2, the condition in Hall's theorem is satisfied
for sets of size less than 3. We can easily check that the number of employees qualified for each of the four

subsets of size 3 is at least 3, and clearly the number of employees qualified for each of the subsets of size 4

has size 4.

c) The answer is not unique; one complete matching is {Pn, Qs, Rw, Sh}, which is easily found by inspection.

29. The partite sets are the set of women ({Tina, Uma, Vandana, Xia, Zelda}) and the set of men ({ Anil, Barry,

Emilio, Sandeep, Teja}). We will use first letters for convenience (but J for Teja). The given information tells

us that we have edges AV, AZ, BT, BX, BU, ET, EZ, JT, JZ, ST, and SV in our graph. We do not

put an edge between a man and a woman he is not willing to marry. By inspection we find that the condition

in Hall's theorem is violated by {U, X}, because these two vertices are adjacent only to B. In other words,
only Barry is willing to marry Uma and Xia, so there can be no matching.

31. We model this with an undirected bipartite graph, with the men and the women represented by the vertices in

the two parts and an edge between two vertices if they are willing to marry each other. By Hall's theorem, it

is enough to show that for every set S of women, the set N(S) of men willing to marry them has cardinality

at least ISi. A clever way to prove this is by counting edges. Let m be the number of edges between S and

N(S). Since every vertex in S has degree k, it follows that m = kl SI. Because these edges are incident to

N(S), it follows that m ::; klN(S)I. Combining these two facts gives klSI ::; klN(S)I, so IN(S)I ?: ISi, as

desired.

33. a) By definition, the vertices are a, b, c, and f, and the edges are all the edges of the given graph joining
vertices in this list, namely ab, af, be, and bf.

b) Contracting edge bf merges the vertices b and f into a new vertex; call it x. Edges ab and af are

replaced by edge ax; edges eb and ef are replaced by edge ex; and edge cb is replaced by edge ex. Vertex

d continues to be an isolated vertex in the contracted graph.

35. a) Obviously Kn has n vertices. It has C(n, 2) = n(n - 1)/2 edges, since each unordered pair of distinct

vertices is an edge.

358 Chapter 10 Graphs

b) Obviously Cn has n vertices. Just as obviously it has n edges.

c) The wheel Wn is the same as Cn with an extra vertex and n extra edges incident to that vertex. Therefore
it has n + 1 vertices and n + n = 2n edges.

d) By definition Km,n has m + n vertices. Since it has one edge for each choice of a vertex in the one part

and a vertex in the other part, it has mn edges.

e) Since the vertices of Qn are the bit strings of length n, there are 2n vertices. Each vertex has degree n,
since there are n strings that differ from any given string in exactly one bit (any one of the n different bits
can be changed). Thus the sum of the degrees is n2n. Since this must equal twice the number of edges (by
the handshaking theorem), we know that there are n2n /2 = n2n-i edges.

37. In each case we just record the degrees of the vertices in a list, from largest to smallest.

a) Each of the four vertices is adjacent to each of the other three vertices, so the degree sequence is 3, 3, 3, 3.

b) Each of the four vertices is adjacent to its two neighbors in the cycle, so the degree sequence is 2, 2, 2, 2.

c) Each of the four vertices on the rim of the wheel is adjacent to each of its two neighbors on the rim, as well

as to the middle vertex. The middle vertex is adjacent to the four rim vertices. Therefore the degree sequence

is 4, 3, 3, 3, 3.

d) Each of the vertices in the part of size two is adjacent to each of the three vertices in the part of size three,
and vice versa, so the degree sequence is 3, 3, 2, 2, 2.

e) Each of the eight vertices in the cube is adjacent to three others (for example, 000 is adjacent to 001, 010,

and 100. Therefore the degree sequence is 3, 3, 3, 3, 3, 3, 3, 3.

39. Each of the n vertices is adjacent to each of the other n - 1 vertices, so the degree sequence is simply
n - 1, n - 1, ... , n - 1, with n terms in the sequence.

41. The number of edges is half the sum of the degrees (Theorem 1). Therefore this graph has (5 + 2 + 2 + 2 +
2 + 1)/2 = 7 edges. A picture of this graph is shown here (it is essentially unique).

43. There is no such graph in part (b), since the sum of the degrees is odd (and also because a simple graph with

5 vertices cannot have any degrees greater than 4). Similarly, the odd degree sum prohibits the existence of
graphs with the degree sequences given in part (d) and part (f). There is no such graph in part (c), since

the existence of two vertices of degree 4 implies that there are two vertices each joined by an edge to every

other vertex. This means that the degree of each vertex has to be at least 2, and there can be no vertex of

degree 1. The graphs for part (a) and part (e) are shown below; one can draw them after just a little trial

and error.

(a) (e)

45. We need to prove two conditional statements. First, suppose that di , d2, ... , dn is graphic. We must show

that the sequence whose terms are d2 - 1, d3 - 1, ... , dd 1 +1 - 1, dd1 + 2 , dd 1 +3, ... , dn is graphic once it

is put into nonincreasing order. Apparently what we want to do is to remove the vertex of highest degree

(di) from a graph with the original degree sequence and reduce by 1 the degrees of the vertices to which it is

Section 10.2 Graph Terminology and Special Types of Graphs 359

adjacent, but we also want to make sure that those vertices are the ones with the highest degrees among the

remaining vertices. In Exercise 44 it is proved that if the original sequence is graphic, then in fact there is a

graph having this degree sequence in which the vertex of degree di is adjacent to the vertices of degrees d2,

d3, ... , dd, +1 . Thus our plan works, and we have a graph whose degree sequence is as desired.

Conversely, suppose that di , d2 , ... , dn is a nonincreasing sequence such that the sequence d2 - 1,

d3 - 1, ... , dd, + i - 1, dd, +2 , dd, +3 , ... , dn is graphic once it is put into nonincreasing order. Take a graph

with this latter degree sequence, where vertex Vi has degree di - 1 for 2 ~ i ~ di + 1 and vertex vi has degree

di for di + 2 ~ i ~ n. Adjoin one new vertex (call it vi), and put in an edge from vi to each of the vertices

V2, V3, ... , Vd, +i. Then clearly the resulting graph has degree sequence di, d2, ... , dn.

47. Let di, d2, ... , dn be a nonincreasing sequence of nonnegative integers with an even sum. We want to

construct a pseudograph with this as its degree sequence. Even degrees can be achieved using only loops, each
of which contributes 2 to the count of its endpoint; vertices of odd degrees will need a non-loop edge, but

one will suffice (the rest of the count at that vertex will be made up by loops). Following the hint, we take

vertices vi, v2, ... , Vn and put l d,/2 J loops at vertex Vi, for i = 1, 2, ... , n. For each i, vertex Vi now has

degree either d, (if di is even) or d, - 1 (if di is odd). Because the original sum was even, the number of

vertices falling into the latter category is even. If there are 2k such vertices, pair them up arbitrarily, and put

in k more edges, one joining the vertices in each pair. The resulting graph will have degree sequence di, d2,

· · ·, dn.

49. We will count the subgraphs in terms of the number of vertices they contain. There are clearly just 3 subgraphs

consisting of just one vertex. If a subgraph is to have two vertices, then there are C(3, 2) = 3 ways to choose

the vertices, and then 2 ways in each case to decide whether or not to include the edge joining them. This
gives us 3 · 2 = 6 subgraphs with two vertices. If a subgraph is to have all three vertices, then there are 23 = 8

ways to decide whether or not to include each of the edges. Thus our answer is 3 + 6 + 8 = 17.

51. This graph has a lot of subgraphs. First of all, any nonempty subset of the vertex set can be the vertex

set for a subgraph, and there are 15 such subsets. If the set of vertices of the subgraph does not contain

vertex a, then the subgraph can of course have no edges. If it does contain vertex a, then it can contain or

fail to contain each edge from a to whichever other vertices are included. A careful enumeration of all the

possibilities gives the 34 graphs shown below.

DODOO
LJD[JDDJ
DDDDLJ
[J [J CJ LJ CJ

360 Chapter 10 Graphs

Dl D [] lSl lfSl
DD. ~lf:lD:l

d LJLLJ cd

[] [SJ ~ l5J
53. a) The complete graph Kn is regular for all values of n :::: 1, since the degree of each vertex is n - 1.

b) The degree of each vertex of Cn is 2 for all n for which Cn is defined, namely n :::: 3, so Cn is regular for

all these values of n.

c) The degree of the middle vertex of the wheel W n is n, and the degree of the vertices on the "rim" is 3.

Therefore l-Vn is regular if and only if n = 3. Of course W3 is the same as K 4 .

d) The cube Qn is regular for all values of n:::: 0, since the degree of each vertex in Qn is n. (Note that Qo

is the graph with 1 vertex.)

55. If a graph is regular of degree 4 and has n vertices, then by the handshaking theorem it has 4n/2 = 2n edges.

Since we are told that there are 10 edges, we just need to solve 2n = 10. Thus the graph has 5 vertices. The

complete graph K 5 is one such graph (and the only simple one).

57. \Ve draw the answer by superimposing the graphs (keeping the positions of the vertices the same).

59. a) The complement of a complete graph is a graph with no edges.

b) Since all the edges between the parts are present in Km,n, but none of the edges between vertices in the

same part are, the complement must consist precisely of the disjoint union of a Km and a Kn, i.e., the graph

containing all the edges joining two vertices in the same part and no edges joining vertices in different parts.

c) There is really no better way to describe this graph than simply by saying it is the complement of Cn.

One representation would be to take as vertex set the integers from 1 to n, inclusive, with an edge between

distinct vertices i and j as long as i and j do not differ by ±1, modulo n.

d) Again, there is really no better way to describe this graph than simply by saying it is the complement of

Qn. One representation would be to take as vertex set the bit strings of length n, with two vertices joined by

an edge if the bit strings differ in more than one bit.

61. Since Kv has C(v, 2) = v(v - 1)/2 edges, and since G has all the edges of Kv that G is missing, it is clear

that G has [v(v - 1)/2] - e edges.

63. If G has n vertices, then the degree of vertex v in G is n - 1 minus the degree of v in G (there will be

an edge in G from v to each of the n - 1 other vertices that v is not adjacent to in G). The order of the

sequence will reverse, of course, because if d, :::: d1 , then n - l - d, :S: n - l - d1 . Therefore the degree sequence

of G will be n - 1 - dn, n - 1 - dn-l, ... , n - 1 - d2, n - 1 - d1.

Section 10.3 Representing Graphs and Graph Isomorphism 361

65. Consider the graph G U G. Its vertex set is clearly the vertex set of G; therefore it has n vertices. If u and

v are any two distinct vertices of GU G, then either the edge between u and v is in G, or else by definition

it is in G. Therefore by definition of union, it is in G U G. Thus by definition G U G is the complete graph

Kn·

67. These pictures are identical to the figures in those exercises, with one change, namely that all the arrowheads
are turned around. For example, rather than there being a directed edge from a to b in #7, there is an edge

from b to a. Note that the loops are unaffected by changing the direction of the arrowhead-a loop from a

vertex to itself is the same, whether the drawing of it shows the direction to be clockwise or counterclockwise.

69. It is clear from the definition of converse that a directed graph G = (V, E) is its own converse if and only

if it satisfies the condition that (u, v) E E if and only if (u, v) E E. But this is precisely the definition of

symmetry for the associated relation.

71. Our picture is just like Figure 13, but with only three vertices on each side.

P(0,0) P(0,1) P(0,2)

P(l,O) P(l,1) P(l,2)

P(2,0) P(2,1) P(2,2)

73. Suppose P(i,j) and P(k, l) need to communicate. Clearly by using Ii- kl hops we can move from P(i,j) to

P(k,j). Then using IJ - ll hops we can move from P(k,j) to P(k,l). In all we used Ii - kl+ lj- ll hops.
But each of these absolute values is certainly less than m, since all the indices are less than m. Therefore the

sum is less than 2m, so it is 0(m).

SECTION 10.3 Representing Graphs and Graph Isomorphism

Human beings can get a good feeling for a small graph by looking at a picture of it drawn with points in

the plane and lines or curves joining pairs of these points. If a graph is at all large (say with more than a

dozen vertices or so), then the picture soon becomes too crowded to be useful. A computer has little use
for nice pictures, no matter how small the vertex set. Thus people and machines need more precise-more

discrete-representations of graphs. In this section we learned about some useful representations. They are

for the most part exactly what any intelligent person would come up with, given the assignment to do so.

The only tricky idea in this section is the concept of graph isomorphism. It is a special case of a more
general notion of isomorphism, or sameness, of mathematical objects in various settings. Isomorphism tries

to capture the idea that all that really matters in a graph is the adjacency structure. If we can find a way
to superimpose the graphs so that the adjacency structures match, then the graphs are, for all purposes that
matter, the same. In trying to show that two graphs are isomorphic, try moving the vertices around in your
mind to see whether you can make the graphs look the same. Of course there are often lots of things to help.

For example, in every isomorphism, vertices that correspond must have the same degree.

A good general strategy for determining whether two graphs are isomorphic might go something like this.
First check the degrees of the vertices to make sure there are the same number of each degree. See whether
vertices of corresponding degrees follow the same adjacency pattern (e.g., if there is a vertex of degree 1

adjacent to a vertex of degree 4 in one of the graphs, then there must be the same pattern in the other, if the

362 Chapter 10 Graphs

graphs are isomorphic). Then look for triangles in the graphs, and see whether they correspond. Sometimes,
if the graphs have lots of edges, it is easier to see whether the complements are isomorphic (see Exercise 46).

If you cannot find a good reason for the graphs not to be isomorphic (an invariant on which they differ),
then try to write down a one-to-one and onto function that shows them to be isomorphic (there may be more

than one such function); such a function has to have vertices of like degrees correspond, so often the function

practically writes itself. Then check each edge of the first graph to make sure that it corresponds to an edge

of the second graph under this correspondence.

Unfortunately, no one has yet discovered a really good algorithm for determining graph isomorphism that
works on all pairs of graphs. Research in this subject has been quite active in recent years. See Writing

Project 10.

1. Adjacency lists are lists of lists. The adjacency list of an undirected graph is simply a list of the vertices of the

given graph, together with a list of the vertices adjacent to each. The list for this graph is as follows. Since,

for instance, b is adjacent to a and d, we list a and d in the row for b.

Vertex Adjacent vertices

a

b

c

d

b,c,d

a,d
a,d
a,b,c

3. To form the adjacency list of a directed graph, we list, for each vertex in the graph, the terminal vertex of

each edge that has the given vertex as its initial vertex. The list for this directed graph is as follows. For

example, since there are edges from d to each of b, c, and d, we put those vertices in the row for d.

Initial vertex

a

b

c

d

Terminal vertices

a,b,c,d

d

a,b

b,c,d

5. For Exercises 5-8 we assume that the vertices are listed in alphabetical order. The matrix contains a 1 as

entry (i, j) if there is an edge from vertex i to vertex j; otherwise that entry is 0.

[; ~ ~ il
7. This is similar to Exercise 5. Note that edges have direction here, so that, for example, the (1, 2) entry is a 1

since there is an edge from a to b, but the (2, 1) entry is a 0 since there is no edge from b to a. Also, the

(1, 1) entry is a 1 since there is a loop at a, but the (2, 2) entry is a 0 since there is no loop at b.

[! ~ ~ ~]
9. We can solve these problems by first drawing the graph, then labeling the vertices, and finally constructing

the matrix by putting a 1 in position (i, j) whenever vertices i and j are joined by an edge. It helps to

choose a nice order, since then the matrix will have nice patterns in it.

Section 10.3 Representing Graphs and Graph Isomorphism 363

a) The order of the vertices does not matter, since they all play the same role. The matrix has O's on the

diagonal, since there are no loops in the complete graph.

b) We put the vertex in the part by itself first.

[ll ~ ~ ~ ~1
0 0 0 0

c) We put the vertices in the part of size 2 first. Notice the block structure.

[

o o 1 1 11 0 0 1 1 1
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0

d) We put the vertices in the same order in the matrix as they are around the cycle.

[~ ~ ~ !l
e) We put the center vertex first. Note that the last four columns of the last four rows represent a C4 .

[

o 1 1 1 11 1 0 1 0 1
1 1 0 1 0
1 0 1 0 1
1 1 0 1 0

f) We can label the vertices by the binary numbers from 0 to 7. Thus the first row (also the first column) of

this matrix corresponds to the string 000, the second to the string 001, and so on. Since Q3 has 8 vertices,
this is an 8 x 8 matrix.

0 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 1 1 0

11. This graph has four vertices and is directed, since the matrix is not symmetric. We draw the four vertices as

points in the plane, then draw a directed edge from vertex i to vertex j whenever there is a 1 in position

(i, j) in the given matrix.

~b

a~

364 Chapter 10 Graphs

13. We use alphabetical order of the vertices for Exercises 13-15. If there are k parallel edges between vertices i

and j, then we put the number k into the (i,j)th entry of the matrix. In this exercise, there is only one pair

of parallel edges.

15. This is similar to Exercise 13. In this graph there are loops, which are represented by entries on the diagonal.

For example, the loop at c is shown by the 1 as the (3, 3)th entry.

[~ ~
2 1
1 2

~ ~i 1 0
0 1

17. Because of the numbers larger than 1, we need multiple edges in this graph.

6

19. We use alphabetical order of the vertices. We put a 1 in position (i, j) if there is a directed edge from vertex

i to vertex j; otherwise we make that entry a 0. Note that loops are represented by l's on the diagonal.

[

o 1
0 1
0 1
1 0

~ ~i 1 1
0 0

21. This is similar to Exercise 19, except that there are parallel directed edges. If there are k parallel edges from

vertex i to vertex j, then we put the number k into the (i, j) th entry of the matrix. For example, since there

are 2 edges from a to c, the (1, 3)th entry of the adjacency matrix is 2; the loop at c is shown by the 1 as

the (3, 3)th entry.

23. Since the matrix is not symmetric, we need directed edges; furthermore, it must be a directed multigraph

because of the entries larger than 1. For example, the 2 in position (3, 2) means that there are two parallel

edges from vertex c to vertex b .

Section 10.3 Representing Graphs and Graph Isomorphism 365

25. Since the matrix is symmetric, it has to be square, so it represents a graph of some sort. In fact, such a
matrix does represent a simple graph. The fact that it is a zero-one matrix means that there are no parallel

edges. The fact that there are O's on the diagonal means that there are no loops. The fact that the matrix is

symmetric means that the edges can be assumed to be undirected. Note that such a matrix also represents a

directed graph in which all the edges happen to appear in antiparallel pairs (see the solution to Exercise ld
in Section 10.l for a definition), but that is irrelevant to this question; the answer to the question asked is
"yes."

27. In an incidence matrix we have one column for each edge. We use alphabetical order of the vertices. Loops

are represented by columns with one 1; other edges are represented by columns with two l's. The order in
which the columns are listed is immaterial.

Exercise 13

[~
0 0 0

~]
Exercise 14

[~
1 1 1 0 0 0

~] 1 1 1 1 1 0 1 0 0
1 0 0 0 0 0 1 1 1
0 1 1 0 0 1 0 1 1

Exercise 15

[~
1 1 1 0 0 0 0 0

~] 0 0 0 1 1 1 1 0
1 1 0 0 1 0 0 1
0 0 1 0 0 1 1 0

29. In an undirected graph, each edge incident to a vertex j contributes 1 in the jth column; thus the sum of

the entries in that column is just the number of edges incident to j. Another way to state the answer is that
the sum of the entries is the degree of j minus the number of loops at j, since each loop contributes 2 to the

degree count.

In a directed graph, each edge whose terminal vertex is j contributes 1 in the lh column; thus the sum

of the entries in that column is just the number of edges that have j as their terminal vertex. Another way

to state the answer is that the sum of the entries is the in-degree of j .

31. Since each column represents an edge, the sum of the entries in the column is either 2, if the edge has 2

incident vertices (i.e., is not a loop), or 1 if it has only 1 incident vertex (i.e., is a loop).

33. a) The incidence matrix for Kn has n rows and C(n, 2) columns. For each and j with 1 :::; i < j :::; n,
there is a column with l's in rows i and j and O's elsewhere.

b) The matrix looks like this, with n rows and n columns.

1 0 0 0 1
1 1 0 0 0
0 1 1 0 0
0 0 1 0 0

0 0 0 1 0
0 0 0 1 1

c) The matrix looks like the matrix for Cn, except with an extra row of O's (which we have put at the end),

since the vertex "in the middle" is not involved in the edges "around the outside,'' and n more columns for

the "spokes." We show some extra space between the rim edge columns and the spoke columns; this is for

366 Chapter 10 Graphs

human convenience only and does not have any bearing on the matrix itself.

1 0 0 0 1 1 0 0 0
1 1 0 0 0 0 1 0 0
0 1 1 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0 1
0 0 0 0 0 1 1 1 1

d) This matrix has m + n rows and mn columns, one column for each pair (i,j) with 1 s i S m and

1 s j S n. We have put in some extra spacing for readability of the pattern.

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

35. These graphs are isomorphic, since each is the 5-cycle. One isomorphism is f(u1) = v1, f(u2) = v3, f(u3) =
V5, l(u4) =v2, and l(us) =V4.

37. These graphs are isomorphic, since each is the 7-cycle (this is just like Exercise 35).

39. These two graphs are isomorphic. One can see this visually-just imagine "moving" vertices u 1 and u4

into the inside of the rectangle, thereby obtaining the picture on the right. Formally, one isomorphism is

l(u1) = V5, l(u2) = v2, l(u3) = v3, l(u4) = V5, l(us) = V4, and l(u5) = v1.

41. These graphs are not isomorphic. In the first graph the vertices of degree 3 are adjacent to a common vertex.

This is not true of the second graph.

43. These are isomorphic. One isomorphism is l (u1) = V1, l(u2) = Vg, l (u3) = V4, l (u4) = V3, l(us) = V2,
f(u5) =Vs, f(u1) = v1, f(us) = 115, f(ug) = 1110, and l(u10) = 115.

45. We must show that being isomorphic is reflexive, symmetric, and transitive. It is reflexive since the identity

function from a graph to itself provides the isomorphism (the one-to-one correspondence)-certainly the iden

tity function preserves adjacency and nonadjacency. It is symmetric, since if f is a one-to-one correspondence

that makes G1 isomorphic to G2, then 1-1 is a one-to-one correspondence that makes G2 isomorphic to G1;
that is, 1-1 is a one-to-one and onto function from Vi to Vi such that c and d are adjacent in G2 if and

only if l-1 (c) and l- 1(d) are adjacent in G1 . It is transitive, since if l is a one-to-one correspondence that

makes G1 isomorphic to G2, and g is a one-to-one correspondence that makes G2 isomorphic to G3, then

go l is a one-to-one correspondence that makes G1 isomorphic to G3 .

47. If a vertex is isolated, then it has no adjacent vertices. Therefore in the adjacency matrix the row and column

for that vertex must contain all O's.

Section 10.3 Representing Graphs and Graph Isomorphism 367

49. Let Vi and Vi be the two parts, say of sizes m and n, respectively. We can number the vertices so that

all the vertices in Vi come before all the vertices in Vi. The adjacency matrix has m + n rows and m + n
columns. Since there are no edges between two vertices in Vi, the first m columns of the first m rows must
all be O's. Similarly, since there are no edges between two vertices in Vi, the last n columns of the last n

rows must all be O's. This is what we were asked to prove.

51. There are two such graphs, which can be found by trial and error. (We need only look for graphs with 5

vertices and 5 edges, since a self-complementary graph with 5 vertices must have C(5, 2)/2 = 5 edges. If

nothing else, we can draw them all and find the complement of each. See the pictures for the solution of

Exercise 47d in Section 10.4.) One such graph is C5. The other consists of a triangle, together with an edge

from one vertex of the triangle to the fourth vertex, and an edge from another vertex of the triangle to the

fifth vertex.

53. If Cn is to be self-complementary, then Cn must have the same number of edges as its complement. We know

that Cn has n edges. Its complement has the number of edges in Kn minus the number of edges in Cn,

namely C(n, 2)-n = [n(n-1)/2]-n. If we set these two quantities equal we obtain [n(n-1)/2]-n = n, which

has n = 5 as its only solution. Thus C5 is the only Cn that might be self-complementary-our argument

just shows that it has the same number of edges as its complement, not that it is indeed isomorphic to its

complement. However, it we draw C5 and then draw its complement, then we see that the complement is

again a copy of C5 . Thus n = 5 is the answer to the problem.

55. We need to enumerate these graphs carefully to make sure of getting them all-leaving none out and not

duplicating any. Let us organize our catalog by the degrees of the vertices. Since there are only 3 edges, the

largest the degree could be is 3, and the only graph with 5 vertices, 3 edges, and a vertex of degree 3 is a
Ki,3 together with an isolated vertex. If all the vertices that are not isolated have degree 2, then the graph

must consist of a C3 and 2 isolated vertices. The only way for there to be two vertices of degree 2 (and

therefore also 2 of degree 1) is for the graph to be three edges strung end to end, together with an isolated

vertex. The only other possibility is for 2 of the edges to be adjacent and the third to be not adjacent to

either of the others. All in all, then, we have the 4 possibilities shown below.

See [ReWi] for more information about graph enumeration problems of this sort (such as Exercises 54,

56, and 68 in this section, Exercise 47 in Section 10.4, and supplementary exercises 2, 31, 32, and 40) .

•

57. a) Both graphs consist of 2 sides of a triangle; they are clearly isomorphic.

b) The graphs are not isomorphic, since the first has 4 edges and the second has 5 edges.

c) The graphs are not isomorphic, since the first has 4 edges and the second has 3 edges.

59. There are at least two approaches we could take here. One approach is to have a correspondence not only

of the vertices but also of the edges, with incidence (and nonincidence) preserved. In detail, we say that two

pseudographs G1 = (Vi, E 1) and G2 = (Vi, E 2) are isomorphic if there are one-to-one and onto functions

f : Vi -> Vi and g : E1 -> E2 such that for each vertex v E Vi and edge e E E1 , v is incident to e if and
only if f(v) is incident to g(e).

Another approach is simply to count the number of edges between pairs of vertices. Thus we can define

G1 = (Vi, E1) to be isomorphic to G2 = (Vi, E2) if there is a one-to-one and onto function f: Vi ->Vi such

that for every pair of (not necessarily distinct) vertices u and v in Vi , there are exactly the same number of

368 Chapter 10 Graphs

edges in E 1 with { u, v} as their set of endpoints as there are edges in E 2 with {! (u), f (v)} as their set of
endpoints.

61. We can tell by looking at the loop, the parallel edges, and the degrees of the vertices that if these directed graphs

are to be isomorphic, then the isomorphism has to be f (ui) = V3, f (u2) = V4, f (u3) = v2, and f (u4) = v1 .

We then need to check that each directed edge (uiiu1) corresponds to a directed edge (f(ui),f(u1)). We
check that indeed it does for each of the 7 edges (and there are only 7 edges in the second graph). Therefore
the two graphs are isomorphic.

63. If there is to be an isomorphism, the vertices with the same in-degree would have to correspond, and the edge

between them would have to point in the same direction, so we would need u 1 to correspond to v3 , and u2 to
correspond to 111. Similarly we would need u3 to correspond to v4, and u4 to correspond to v2 . If we check
all 6 edges under this correspondence, then we see that adjacencies are preserved (in the same direction), so

the graphs are isomorphic.

65. If f is an isomorphism from a directed graph C to a directed graph H, then f is also an isomorphism from
cc to He. This is clear, because (u.v) is an edge of cc if and only if (v,u) is an edge of C if and only if

(f(v),f(u)) is an edge of H if and only if (f(u),f(v)) is an edge of He.

67. A graph with a triangle will not be bipartite, but cycles of even length are bipartite. So we could let one graph

be C6 and the other be the union of two disjoint copies of C3 .

69. Suppose that the graph has v vertices and e edges. Then the incidence matrix is a v x e matrix, so its

transpose is an e x v matrix. Therefore the product is a v x v matrix. Suppose that we denote the typical

entry of this product by ai1 . Let t,k be the typical entry of the incidence matrix; it is either a 0 or a 1. By

definition
e

a,) = 2..: tikt1k.

k=l

We can now read off the answer from this equation. If i-=/:- j, then ai1 is just a count of the number of edges

incident to both i and j -in other words, the number of edges between i and j . On the other hand aii is

equal to the number of edges incident to i .

71. Perhaps the simplest example would be to have the graphs have all degrees equaling 2. One way for this to

happen is for the graph to be a cycle. But it will also happen if the graph is a disjoint union of cycles. The

smallest example occurs when there are six vertices. If G1 is the 6-cycle and G2 is the union of two triangles,

then the degree sequences are (2, 2, 2, 2, 2, 2) for both, but obviously the graphs are not isomorphic. If we
want a connected example, then look at Exercise 41, where the degree sequence is (3, 3, 2, 2, 1, 1, 1, 1) for each

graph.

SECTION 10.4 Connectivity

Some of the most important uses of graphs deal with the notion of path, as the examples and exercises in

this and subsequent sections show. It is important to understand the definitions, of course. Many of the

exercises here are straightforward. The reader who wants to get a better feeling for what the arguments in

more advanced graph theory are like should tackle problems like Exercises 35-38.

Section 10.4 Connectivity 369

1. a) This is a path of length 4, but it is not simple, since edge {b, c} is used twice. It is not a circuit, since it

ends at a different vertex from the one at which it began.

b) This is not a path, since there is no edge from c to a.

c) This is not a path, since there is no edge from b to a.

d) This is a path of length 5 (it has 5 edges in it). It is simple, since no edge is repeated. It is a circuit since

it ends at the same vertex at which it began.

3. This graph is not connected-it has three components.

5. This graph is not connected. There is no path from the vertices in one of the triangles to the vertices in the

other.

7. A connected component of an acquaintanceship graph represent a maximal set of people with the property

that for any two of them, we can find a string of acquaintances that takes us from one to the other. The word

"maximal" here implies that nobody else can be added to this set of people without destroying this property.

9. If a person has Erdos number n, then there is a path of length n from that person to Erdos in the collaboration
graph. By definition, that means that that person is in the same component as Erdos. Conversely, if a person

is in the same component as Erdos, then there is a path from that person to Erdos, and the length of a shortest

such path is that person's Erdos number.

11. a) Notice that there is no path from a to any other vertex, because both edges involving a are directed

toward a. Therefore the graph is not strongly connected. However, the underlying undirected graph is clearly

connected, so this graph is weakly connected.

b) Notice that there is no path from c to any other vertex, because both edges involving c are directed

toward c. Therefore the graph is not strongly connected. However, the underlying undirected graph is clearly

connected, so this graph is weakly connected.

c) The underlying undirected graph is clearly not connected (one component has vertices b, f, and e), so

this graph is neither strongly nor weakly connected.

13. The strongly connected components are the maximal sets of phone numbers for which it is possible to find

directed paths between every two different numbers in the set, where the existence of a directed path from
phone number x to another phone number y means that x called some number, which called another number,

... , which called y. (The number of intermediary phone numbers in this path can be any natural number.)

15. In each case we want to look for large sets of vertices all which of which have paths to all the others. For these

graphs, this can be done by inspection. These will be the strongly connected components.

a) Clearly {a, b, J} is a set of vertices with paths between all the vertices in the set. The same can be said of
{ c, d, e} . Every edge between a vertex in the first set and a vertex in the second set is directed from the first,
to the second. Hence there are no paths from c, d, or e to a, b, or f, and therefore these vertices are not in

the same strongly connected component. Therefore these two sets are the strongly connected component.

b) The circuits a, e, d, c, b, a and a, e, d, h, a show that these six vertices are all in the same component. There

is no path from f to any of these vertices, and no path from g to any other vertex. Therefore f and g are
not in the same strong component as any other vertex. Therefore the strongly connected components are

{a, b, c, d, e, h}, {!}, and {g}.

c) It is clear that a and i are in the same strongly connected component. If we look hard, we can also

find the circuit b, h, f, g, d, e, d, b, so these vertices are in the same strongly connected component. Because of

edges ig and hi, we can get from either of these collections to the other. Thus {a, b, d, e, f, g, h, i} is a strong
component. We cannot travel from c to any other vertex, so c is in a component by itself.

370 Chapter 10 Graphs

17. The hardest part of this exercise is figuring out what we need to prove. It is enough to prove that if the strong

components of u and v are not disjoint then they are the same. So suppose that w is a vertex that is in

both the strong component of u and the strong component of v. (It is enough to consider the vertices in

these components, because the edges in a strong component are just all the edges joining the vertices in that

component.) This means that there are directed paths (in each direction) between u and w and between v

and w. It follows that there are directed paths from u to v and from v to u, via w. Suppose x is a vertex

in the strong component of u. Then x is also in the strong component of v, because there is a path from x

to v (namely the path from x to u followed by the path from u to v) and vice versa.

19. One approach here is simply to invoke Theorem 2 and take successive powers of the adjacency matrix

A~ [; ~ ~ ll
The answers are the off-diagonal elements of these powers. An alternative approach is to argue combinatorially

as follows. Without loss of generality, we assume that the vertices are called 1, 2, 3, 4, and the path is to run

from 1 to 2 . A path of length n is determined by choosing the n - 1 intermediate vertices. Each vertex in

the path must differ from the one immediately preceding it.

a) A path of length 2 requires the choice of 1 intermediate vertex, which must be different from both of the
ends. Vertices 3 and 4 are the only ones available. Therefore the answer is 2.

b) Let the path be denoted 1, x, y, 2 . If x = 2 , then there are 3 choices for y. If x = 3, then there are 2

choices for y; similarly if x = 4. Therefore there are 3 + 2 + 2 = 7 possibilities in all.

c) Let the path be denoted 1, x, y, z, 2. If x = 3, then by part (b) there are 7 choices for y and z. Similarly

if x = 4. If x = 2, then y and z can be any two distinct members of {1,3,4}, and there are P(3,2) = 6
ways to choose them. Therefore there are 7 + 7 + 6 = 20 possibilities in all.

d) Let the path be denoted 1,w,x,y,z,2. If w = 3, then by part (c) there are 20 choices for x, y, and z.

Similarly if w = 4. If w = 2, then x must be different from 2, and there are 3 choices for x. For each of

these there are by part (b) 7 choices for y and z. This gives a total of 21 possibilities in this case. Therefore

the answer is 20 + 20 + 21 = 61.

21. Graph G has a triangle (u1 , u2 , u3). Graph H does not (in fact, it is bipartite). Therefore G and H are not

isomorphic.

23. The drawing of G clearly shows it to be the cube Q3 . Can we see H as a cube as well? Yes-we can view the

outer ring as the top face, and the inner ring as the bottom face. We can imagine walking around the top face

of G clockwise (as viewed from above), then dropping down to the bottom face and walking around it counter

clockwise, finally returning to the starting point on the top face. This is the path u1, u2, u7, u6, u5, u4, u3, us, u1.

The corresponding path in H is v 1 , v2, V3, V4, vs, vs, V7, V6, v1. We can verify that the edges not in the path

do connect corresponding vertices. Therefore G ~ H.

25. As explained in the solution to Exercise 19, we could take powers of the adjacency matrix

0 0 0 1 1 1
0 0 0 1 1 1

A= 0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

The answers are found in location (1, 2), for instance. Using the alternative approach is much easier than in

Exercise 19. First of all, two nonadjacent vertices must lie in the same part, so only paths of even length can

Section 10.4 Connectivity 371

join them. Also, there are clearly 3 choices for each intermediate vertex in a path. Therefore we have the

following answers:

a) 31 = 3 b) 0 c) 33 = 27 d) 0

27. There are two approaches here. We could use matrix multiplication on the adjacency matrix of this directed
graph (by Theorem 2), which is

1 0 1
0 0 0
1 0 0
0 0 0
0 1 1

Thus we can compute A 2 for part (a), A 3 for part (b), and so on, and look at the (1, 5)th entry to determine

the number of paths from a to e. Alternately, we can argue in an ad hoc manner, as we do below.

a) There is just 1 path of length 2, namely a, b, e.

b) There are no paths of length 3, since after 3 steps, a path starting at a must be at b, c, or d.

c) For a path of length 4 to end at e, it must be at b after 3 steps. There are only 2 such paths, a, b, a, b, e

and a, d, a, b, e.

d) The only way for a path of length 5 to end at e is for the path to go around the triangle bee. Therefore

only the path a, b, e, c, b, e is possible.

e) There are several possibilities for a path of length 6. Since the only way to get to e is from b, we are asking
for the number of paths of length 5 from a to b. We can go around the square (a, b, e, d, a, b), or else we can

jog over to either b or d and back twice-there being 4 ways to choose where to do the jogging. Therefore

there are 5 paths in all.

f) As in part (d), it is clear that we have to use the triangle. We can either have a, b, a, b, e, c, b, e or

a, d, a, b, e, c, b, e or a, b, e, c, b, a, b, e. Thus there are 3 paths.

29. The definition given here makes it clear that u and v are related if and only if they are in the same component

in other words f(u) = f(v) where f(x) is the component in which x lies. Therefore by Exercise 9 in Section 9.5

this is an equivalence relation.

31. A cut vertex is one whose removal splits the graph into more components than it originally had (which is 1

in this case). Only vertex c is a cut vertex here. If it is removed, then the resulting graph will have two

components. If any other vertex is removed, then the graph remains connected.

33. There are several cut vertices here: b, c, e, and i. Removing any of these vertices creates a graph with more

than one component. The removal of any of the other vertices leaves a graph with just one component.

35. Without loss of generality, we can restrict our attention to the component in which the cut edge lies; other

components of the graph are irrelevant to this proposition. To fix notation, let the cut edge be uv. When the

cut edge is removed, the graph has two components, one of which contains v and the other of which contains u.

If v is pendant, then it is clear that the removal of v results in exactly the component containing u-a

connected graph. Therefore v is not a cut vertex in this case. On the other hand, if v is not pendant, then

there are other vertices in the component containing v-at least one other vertex w adjacent to v. (We are

assuming that this proposition refers to a simple graph, so that there is no loop at v.) Therefore when v 1s

removed, there are at least two components, one containing u and another containing w.

37. If every component of G is a single vertex, then clearly no vertex is a cut vertex (the removal of any of them
actually decreases the number of components rather than increasing it). Therefore we may as well assume

372 Chapter 10 Graphs

that some component of G has at least two vertices, and we can restrict our attention to that component; in

other words, we can assume that G is connected. One clever way to do this problem is as follows. Define the

distance between two vertices u and v, denoted d(u, v), to be the length of a shortest path joining u and v.

Now choose u and v so that d(u, v) is as large as possible. We claim that neither u nor v is a cut vertex.

Suppose otherwise, say that u is a cut vertex. Then v is in one component that results after u is removed,

and some vertex w is in another. Since there is no path from w to v in the graph with u removed, every

path from w to v must have passed through u. Therefore the distance between w and v must have been
strictly greater than the distance between u and v . This is a contradiction to the choice of u and v, and our
proof by contradiction is complete.

39. This problem is simply asking for the cut edges of these graphs.

a) The link joining Denver and Chicago and the link joining Boston and New York are the cut edges.

b) The following links are the cut edges: Seattle-Portland, Portland-San Francisco, Salt Lake City-Denver,
New York-Boston, Boston-Bangor, Boston-Burlington.

41. A vertex basis will be a set of people who collectively can influence everyone, at least indirectly, but none of

whom influences another member of that set (otherwise the set would not be minimal). The set consisting

of Deborah is a vertex basis, since she can influence everyone except Yvonne directly, and she can influence
Yvonne indirectly through Brian.

43. Since there can be no edges between vertices in different components, G will have the most edges when each

of the components is a complete graph. Since Kn, has C(ni, 2) edges, the maximum number of edges is the

sum given in the exercise.

45. Before we give a correct proof here, let us look at an incorrect proof that students often give for this exercise.

It goes something like this. ''Suppose that the graph is not connected. Then no vertex can be adjacent to

every other vertex, only to n - 2 other vertices. One vertex joined to n - 2 other vertices creates a component

with n - 1 vertices in it. To get the most edges possible, we must use all the edges in this component. The
number of edges in this component is thus C (n - 1, 2) = (n - 1) (n - 2) / 2, and the other component (with only
one vertex) has no edges. Thus we have shown that a disconnected graph has at most (n - l)(n - 2)/2 edges,

so every graph with more edges than that has to be connected." The fallacy here is in assuming-without

justification-that the maximum number of edges is achieved when one component has n - 1 vertices. What

if, say, there were two components of roughly equal size? Might they not together contain more edges? We will
see that the answer is "no," but it is important to realize that this requires proof-it is not obvious without

some calculations.

Here is a correct proof, then. Suppose that the graph is not connected. Then it has a component with k

vertices in it, for some k between 1 and n-1, inclusive. The remaining n- k vertices are in one or more other

components. The maximum number of edges this graph could have is then C(k, 2) + C(n - k, 2), which, after

a bit of algebra, simplifies to k2
- nk + (n 2

- n) /2. This is a quadratic function of k. It is minimized when

k = n/2 (the k coordinate of the vertex of the parabola that is the graph of this function) and maximized at

the endpoints of the domain, namely k = 1 and k = n - 1. In the latter cases its value is (n - l)(n - 2)/2.

Therefore the largest number of edges that a disconnected graph can have is (n - l)(n - 2)/2, so every graph

with more edges than this must be connected.

47. We have to enumerate carefully all the possibilities.

a) There is obviously only 1, namely K 2 , the graph consisting of two vertices and the edge between them.

b) There are clearly 2 connected graphs with 3 vertices, namely K 3 and K 3 with one edge deleted, as

shown.

Section 10.4 Connectivity 373

c) There are several connected graphs with n = 4. If the graph has no circuits, then it must either be a path

of length 3 or the "star" K 1,3 . If it contains a triangle but no copy of C4, then the other vertex must be

pendant-only 1 possibility. If it contains a copy of C4 , then neither, one, or both of the other two edges

may be present-3 possibilities. Therefore the answer is 2 + 1 + 3 = 6. The graphs are shown below.

d) We need to enumerate the possibilities in some systematic way, such as by the largest cycle contained in

the graph. There are 21 such graphs, as can be seen by such an enumeration, shown below. First we show

those graphs with no circuits, then those with a triangle but no C4 or C5 , then those with a C4 but no C5 ,

and finally those with a C5 . In doing this problem we have to be careful not only not to leave out any graphs,

but also not to list any twice.

• • • • • • • I • +
LS1 LS:-. 75: ~

LJ rsr- w
~r=rw
OO®W
@~@@

49. In each case we just need to verify that the removal of an edge will not disconnect the graph.

a) Removing an edge from a cycle leaves a path, which is still connected.

b) Removing an edge from the cycle portion of the wheel leaves that portion still connected as in part (a),

and the central vertex is clearly still connected to it as well. Removing a spoke leaves the cycle intact and the

central vertex still connected to it as well.

c) Let u, v, a, b be any four vertices of Km,n with u and v in one part and a and bin the other. They are

connected by the 4-cycle uavb. Removing one edge will not disconnect this 4-cycle, so these vertices are still

connected, and the entire graph is therefore still connected. Note that we needed m, n ?: 2 for this to work

(and for the statement to be true).

d) Think of Qn as two copies of Qn-l with corresponding vertices joined by an edge. Without loss of

generality we can assume that the removed edge is one of the edges joining corresponding vertices. Since each

Qn-l is connected and at least one edge remains joining the two copies, the resulting graph is connected.

374 Chapter 10 Graphs

51. If G is complete, then removing vertices one by one leaves a complete graph at each step, so we never get a
disconnected graph. Conversely, if G is not complete, say with edge uv missing, then removing all the vertices
except u and v creates the disconnected graph consisting of just those two vertices.

53. Without loss of generality, assume m ::::; n. We can disconnect Km,n by removing the m vertices in the

smaller part. To see that removing fewer than m vertices will not disconnect the graph, note that given any
two vertices ·u and v, there are m paths that pairwise share nothing except their endpoints; these paths are
of length 2 if u and v are in the same part and of length 1 or 3 if they are in different parts. Removing fewer

than m vertices can cut at most m - 1 of these paths, so the resulting graph is still connected. Therefore

K(Km,n) = min(m,n). It is also clear that >.(Km,n)::::; min(m,n), because we can disconnect the graph by

removing all the edges incident to a vertex in the larger part. By the inequality stated after Example 9,

>.(Km,n) :'.'.: K(Km,n). Therefore >.(Km,n) = min(m, n) as well.

55. Let G be a graph with n vertices. Note that K(G) ::::; n - 1. Suppose a smallest edge cut C (i.e., one with

ICI = >.(G)) leaves a nonempty proper subset S of the vertices of G disconnected from the complementary

set S' = V - S. If xy is an edge of G for every x E S and y E S', then the size of C is ISllS'I, which is
at least n - 1 (it is this small only if [S[= 1 or n - 1), so K(G) :::; .A(G) in this case. Otherwise, let x ES

and y E S' be nonadjacent vertices. Let T consist of all neighbors of x in S' together with all vertices of

S - { x} with neighbors in S' . Then T is a vertex cut, because it separates x and y . Now look at the edges

from x to T n S' and one edge from each vertex of T n S to S'; this gives us ITI distinct edges that lie in

c, so .A(G) =[Cl 2 ITI :'.'.: K(G).

57. We need to look at successive powers of the adjacency matrix until we find one in which the (1, 6)th entry is

not 0. Since the matrix is
0 1 0 1 1 0
1 0 1 0 1 1

A=
0 1 0 1 0 1
1 0 1 0 1 0
1 1 0 1 0 1
0 1 1 0 1 0

we see that the (1, 6)th entry of A 2 is 2. Thus there is a path of length 2 from a to f (in fact 2 of them).

On the other hand there is no path of length 1 from a to f (i.e., no edge), so the length of a shortest path

is 2.

59. Let the simple paths P1 and P2 be u = xo, X1, ... , Xn = v and u = yo, y1, ... , Ym = v, respectively. The

paths thus start out at the same vertex. Since the paths do not contain the same set of edges, they must

diverge eventually. If they diverge only after one of them has ended, then the rest of the other path is a simple

circuit from v to v. Otherwise we can suppose that x 0 = Yo, x1 = y1 , ... , Xi = Yi, but Xi+i -=/=- Yi+l . To form

our simple circuit, we follow the path Yi, Yi+l, Yi+ 2 , and so on, until it once again first encounters a vertex

on P1 (possibly as early as Yi+l' no later than Ym). Once we are back on P1, we follow it along-forwards or

backwards, as necessary-to return to Xi. Since Xi = Yi, this certainly forms a circuit. It must be a simple

circuit, since no edge among the Xk's or the yz's can be repeated (P1 and P2 are simple by hypothesis) and

no edge among the Xk's can equal one of the edges Yz that we used, since we abandoned P2 for Pi as soon
as we hit P 1 .

61. Let A be the adjacency matrix of a given graph G. Theorem 2 tells us that Ar counts the number of paths of

length r between vertices. If an entry in Ar is greater than 0, then there is a path between the corresponding

vertices in G. Suppose that we look at A+ A 2 +A 3 + · · ·+An- l , where n is the number of vertices in G. If
there is a path between a pair of distinct vertices in G, then there is a path of length at most n - 1 , so this sum

Section 10.5 Euler and Hamilton Paths 375

will have a positive integer in the corresponding entry. Conversely, if there is no path, then the corresponding

entry in every summand will be 0, and hence the entry in the sum will be 0. Therefore the graph is connected
(i.e., there is a path between every pair of distinct vertices in G) if and only if every off-diagonal entry in this

sum is strictly positive. To determine whether G is connected, therefore, we just compute this sum and check

to see whether this condition holds.

63. We have to prove a statement and its converse here. One direction is fairly easy. If the graph is bipartite, say
with parts A and B, then the vertices in every path must alternately lie in A and B. Therefore a path that

starts in A, say, will end in B after an odd number of steps and in A after an even number of steps. Since

a circuit ends at the same vertex where it starts, the length must be even. The converse is a little harder.

We suppose that all circuits have even length and want to show that the graph is bipartite. We can assume
that the graph is connected, because if it is not, then we can just work on one component at a time. Let v

be a vertex of the graph, and let A be the set of all vertices to which there is a path of odd length starting

at v, and let B be the set of all vertices to which there is a path of even length starting at v. Since the

component is connected, every vertex lies in A or B. No vertex can lie in both A and B, since then following

the odd-length path from v to that vertex and then back along the even-length path from that vertex to v
would produce an odd circuit, contrary to the hypothesis. Thus the set of vertices has been partitioned into

two sets. Now we just need to show that every edge has endpoints in different parts. If xy is an edge where

x E A, then the odd-length path from v to x followed by xy produces an even-length path from v to y, so

y EB (and similarly if x EB).

65. Suppose the couples are Bob and Carol Sanders, and Ted and Alice Henderson (these were characters in a

movie from 1969). We represent the initial position by (BCT A•, 0), indicating that all four people are on

the left shore along with the boat (the dot). We want to reach the position (0, BCT A•). Positions will be

the vertices of our graph, and legal transitions will be the edges. If Bob and Carol take the boat over, then

we reach the position (TA, BC•). The only useful transition at that point is for someone to row back. Let's

try Bob; so we have (BT A•, C). If Bob and Ted now row to the right shore, we reach (A, BCT•). Ted can

take the boat back to fetch his wife, giving us (TA•, BC) and then (0, BCT A•). Notice that this path never

violates the jealousy conditions imposed in this problem. The entire graph model would have many more

positions, but we just need one path.

SECTION 10.5 Euler and Hamilton Paths

An Euler circuit or Euler path uses every edge exactly once. A Hamilton circuit or Hamilton path uses every

vertex exactly once (not counting the circuit's return to its starting vertex). Euler and Hamilton circuits and

paths have an important place in the history of graph theory, and as we see in this section they have some

interesting applications. They provide a nice contrast-there are good algorithms for finding Euler paths (see
also Exercises 50-53), but computer scientists believe that there is no good (efficient) algorithm for finding
Hamilton paths.

Most of these exercises are straightforward. The reader should at least look at Exercises 16 and 17 to see

how the concept of Euler path applies to directed graphs-these exercises are not hard if you understood the
proof of Theorem 1 (given in the text before the statement of the theorem).

376 Chapter 10 Graphs

1. Since there are four vertices of odd degree (a, b, c, and e) and 4 > 2, this graph has neither an Euler circuit

nor an Euler path.

3. Since there are two vertices of odd degree (a and d), this graph has no Euler circuit, but it does have an

Euler path starting at a and ending at d. We can find such a path by inspection, or by using the splicing
idea explained in this section. One such path is a, e, c, e, b, e, d, b, a, c, d.

5. All the vertex degrees are even, so there is an Euler circuit. We can find such a circuit by inspection, or by

using the splicing idea explained in this section. One such circuit is a, b, c, d, c, e, d, b, e, a, e, a.

7. All the vertex degrees are even, so there is an Euler circuit. We can find such a circuit by inspection, or by

using the splicing idea explained in this section. One such circuit is a, b, c, d, e, f, g, h, i, a, h, b, i, c, e, h, d, g,

c,a.

9. No, an Euler circuit does not exist in the graph modeling this hypothetical city either. Vertices A and B
have odd degree.

11. Assuming we have just one truck to do the painting, the truck must follow an Euler path through the streets

in order to do the job without traveling a street twice. Therefore this can be done precisely when there is
an Euler path or circuit in the graph, which means that either zero or two vertices (intersections) have odd
degree (number of streets meeting there). We are assuming, of course, that the city is connected.

13. In order for the picture to be drawn under the conditions of Exercises 13-15, the graph formed by the picture

must have an Euler path or Euler circuit. Note that all of these graphs are connected. The graph in the
current exercise has all vertices of even degree; therefore it has an Euler circuit and can be so traced.

15. See the comments in the solution to Exercise 13. This graph has 4 vertices of odd degree; therefore it has no

Euler path or circuit and cannot be so traced.

17. If there is an Euler path, then as we follow it through the graph, each vertex except the starting and ending

vertex must have equal in-degree and out-degree, since whenever we come to the vertex along some edge, we

leave it along some edge. The starting vertex must have out-degree 1 greater than its in-degree, since after

we have started, using one edge leading out of this vertex, the same argument applies. Similarly, the ending

vertex must have in-degree 1 greater than its out-degree, since until we end, using one edge leading into this

vertex, the same argument applies. Note that the Euler path itself guarantees weak connectivity; given any

two vertices, there is a path from the one that occurs first along the Euler path to the other, via the Euler

path.

Conversely, suppose that the graph meets the degree conditions stated here. By Exercise 16 it cannot

have an Euler circuit. If we add one more edge from the vertex of deficient out-degree to the vertex of deficient

in-degree, then the graph now has every vertex with its in-degree equal to its out-degree. Certainly the graph

is still weakly connected. By Exercise 16 there is an Euler circuit in this new graph. If we delete the added

edge, then what is left of the circuit is an Euler path from the vertex of deficient in-degree to the vertex of

deficient out-degree.

19. For Exercises 18-23 we use the results of Exercises 16 and 17. By Exercise 16, we cannot hope to find an

Euler circuit since vertex b has different out-degree and in-degree. By Exercise 17, we cannot hope to find an

Euler path since vertex b has out-degree and in-degree differing by 2.

Section 10.5 Euler and Hamilton Paths 377

21. This directed graph satisfies the condition of Exercise 17 but not that of Exercise 16. Therefore there is no

Euler circuit. The Euler path must go from a to e. One such path is a, d, e, d, b, a, e, c, e, b, c, b. e.

23. There are more than two vertices whose in-degree and out-degree differ by 1, so by Exercises 16 and 17, there

is no Euler path or Euler circuit.

25. The algorithm is very similar to Algorithm 1. The input is a weakly connected directed multigraph in which
either each vertex has in-degree equal to its out-degree, or else all vertices except two satisfy this condition

and the remaining vertices have in-degree differing from out-degree by 1 (necessarily once in each direction).

We begin by forming a path starting at the vertex whose out-degree exceeds its in-degree by 1 (in the second

case) or at any vertex (in the first case). We traverse the edges (never more than once each), forming a path,
until we cannot go on. Necessarily we end up either at the vertex whose in-degree exceeds its out-degree (in
the first case) or at the starting vertex (in the second case). From then on we do exactly as in Algorithm 1,

finding a simple circuit among the edges not yet used, starting at any vertex on the path we already have;

such a vertex exists by the weak connectivity assumption. We splice this circuit into the path, and repeat the

process until all edges have been used.

27. a) Clearly K 2 has an Euler path but no Euler circuit. For odd n > 2 there is an Euler circuit (since the

degrees of all the vertices are n -1, which is even), whereas for even n > 2 there are at least 4 vertices of odd

degree and hence no Euler path. Thus for no n other than 2 is there an Euler path but not an Euler circuit.

b) Since Cn has an Euler circuit for all n, there are no values of n meeting these conditions.

c) A wheel has at least 3 vertices of degree 3 (around the rim), so there can be no Euler path.

d) The same argument applies here as applied in part (a). In more detail, Q1 (which is the same as K 2) is

the only cube with an Euler path but no Euler circuit, since for odd n > 1 there are too many vertices of odd

degree, and for even n > 1 there is an Euler circuit.

29. Just as a graph with 2 vertices of odd degree can be drawn with one continuous motion, a graph with 2m

vertices of odd degree can be drawn with m continuous motions. The graph in Exercise 1 has 4 vertices of

odd degree, so it takes 2 continuous motions; in other words, the pencil must be lifted once. We could do

this, for example, by first tracing a, c, d, e, a, b and then tracing c, b, e. The graphs in Exercises 2-7 all have

Euler paths, so no lifting is necessary.

31. It is clear that a, b, c, d, e, a is a Hamilton circuit.

33. There is no Hamilton circuit because of the cut edges ({ c, e}, for instance). Once a purported circuit had

reached vertex e, there would be nowhere for it to go.

35. There is no Hamiltonian circuit in this graph. If there were one, then it would have to include all the edges

of the graph, because it would have to enter and exit vertex a, enter and exit vertex d, and enter and exit
vertex e. But then vertex c would have been visited more than once, a contradiction.

37. This graph has the Hamilton path a, b, c, f, d, e. This simple path hits each vertex once.

39. This graph has the Hamilton path f, e, d, a, b, c.

41. There are eight vertices of degree 2 in this graph. Only two of them can be the end vertices of a Hamilton

path, so for each of the other six their two incident edges must be present in the path. Now if either all four

of the "outside" vertices of degree 2 (a, c, g, and e) or all four of the ''inside'' vertices of degree 2 (i , k,

378 Chapter 10 Graphs

l, and n) are not end vertices, then a circuit will be completed that does not include all the vertices-either

the outside square or the middle square. Therefore if there is to be a Hamilton path then exactly one of the

inside corner vertices must be an end vertex, and each of the other inside corner vertices must have its two

incident edges in the path. Without loss of generality we can assume that vertex i is an end, and that the

path begins i, o, n, m, l, q, k, j. At this point, either the path must visit vertex p, in which case it gets stuck,

or else it must visit b, in which case it will never be able to reach p. Either case gives a contradiction, so

there is no Hamilton path.

43. It is easy to write down a Hamiltonian path here; for example, a, d, g, h, i, f, c, e, b.

45. A Hamilton circuit in a bipartite graph must visit the vertices in the parts alternately, returning to the part

in which it began. Therefore a necessary condition is certainly m = n. Furthermore K 1,1 does not have a

Hamilton circuit, so we need n ::'.". 2 as well. On the other hand, since the complete bipartite graph has all

the edges we need, these conditions are sufficient. Explicitly, if the vertices are a 1 , a2 , ... , an in one part and

b1, b2, ... , bn in the other, with n 2: 2, then one Hamilton circuit is a1, b1, a2, b2, ... , an, bn, a1 .

47. For Dirac's theorem to be applicable, we need every vertex to have degree at least n/2, where n is the number

of vertices in the graph. For Ore's theorem, we need deg(x) + deg(y) ::'.". n whenever x and y are not adjacent.

a) In this graph n = 5. Dirac's theorem does not apply, since there is a vertex of degree 2, and 2 is smaller

than n/2. Ore's theorem also does not apply, since there are two nonadjacent vertices of degree 2, so the
sum of their degrees is less than n. However, the graph does have a Hamilton circuit-just go around the
pentagon. This illustrates that neither of the sufficient conditions for the existence of a Hamilton circuit given

in these theorems is necessary.

b) Everything said in the solution to part (a) is valid here as well.

c) In this graph n = 5, and all the vertex degrees are either 3 or 4, both of which are at least n/2. Therefore
Dirac's theorem guarantees the existence of a Hamilton circuit. Ore's theorem must apply as well, since

(n/2) + (n/2) = n; in this case, the sum of the degrees of any pair of nonadjacent vertices (there are only two

such pairs) is 6, which is greater than or equal to 5.

d) In this graph n = 6, and all the vertex degrees are 3, which is (at least) n/2. Therefore Dirac's theorem
guarantees the existence of a Hamilton circuit. Ore's theorem must apply as well, since (n/2) + (n/2) = n; in
this case, the sum of the degrees of any pair of nonadjacent vertices is 6.

Although not illustrated in any of the examples in this exercise, there are graphs for which Ore's theorem

applies, even though Dirac's does not. Here is one: Take K 4 , and then tack on a path of length 2 between two

of the vertices, say a, b, c. In all, this graph has five vertices, two with degree 3, two with degree 4, and one

with degree 2. Since there is a vertex with degree less than 5/2, Dirac's theorem does not apply. However,

the sum of the degrees of any two (nonadjacent) vertices is at least 2 + 3 = 5, so Ore's theorem does apply

and guarantees that there is a Hamilton circuit.

49. The trick is to use a Gray code for n to build one for n + 1. We take the Gray code for n and put a 0 in

front of each term to get half of the Gray code for n + 1; we put a 1 in front to get the second half. Then

we reverse the second half so that the junction at which the two halves meet differ in only the first bit. For

a formal proof we use induction on n. For n = 1 the code is 0, 1 (which is not really a Hamilton circuit in

Q1). Assume the inductive hypothesis that C1, C2, ... , C2n is a Gray code for n. Then Oc1, Oc2, ... , Oc2n, lc2n,

... , lc2, lc1 is a Gray code for n + 1.

51. Turning this verbal description into pseudocode is straightforward, especially if we allow ourselves lots of words

in the pseudocode. We build our circuit (which we think of simply as an ordered list of edges) one edge at a

time, keeping track of the vertex v we are at; the subgraph containing the edges we have not yet used we will

Section 10.5 Euler and Hamilton Paths 379

call H. We assume that the vertices of G are listed in some order, so that when we are asked to choose an

edge from v meeting certain conditions, we can choose the edge to the vertex that comes first in this order

among all those edges meeting the conditions. (This avoids ambiguity, which an algorithm is not supposed to

have.)

procedure fieury(G: connected multigraph with all degrees even)
v : = first vertex of G
circuit :=the empty circuit
H:=G
while H has edges

Let e be an edge in H with v as one of its endpoints,
such that e is not a cut edge of H, if such an edge
exists; otherwise let e be any edge in H with v as
one of its endpoints.

v :=other endpoint of e
Add e to the end of circuit
Remove e from H

return circuit { circuit is an Euler circuit}

53. If every vertex has even degree, then we can simply use Fleury's algorithm to find an Euler circuit, which is

by definition also an Euler path. If there are two vertices with odd degree (and the rest with even degree),

then we can add an edge between these two vertices and apply Fleury's algorithm (using this edge as the first

edge to make it easier to find later), then delete the added edge.

55. A Hamilton circuit in a bipartite graph would have to look like a1 ,b1 ,a2 ,b2 , ... ,akibk,a1 , where each ai is

in one part and each bi is in the other part, since the only edges in the graph join vertices in opposite parts.
In the Hamilton circuit, no vertex is listed twice (except for the final a 1), and every vertex is listed, so the

total number of vertices in the graph must be 2k, which is not an odd number. Therefore a bipartite graph

with an odd number of vertices cannot have a Hamilton circuit.

57. We draw one vertex for each of the 12 squares on the board. We then draw an edge from a vertex to each
vertex that can be reached by moving 2 units horizontally and 1 unit vertically or vice versa. The result is as
shown.

59. First let us try to find a reentrant knight's tour. Looking at the graph in the solution to Exercise 57 we see

that every vertex on the left and right edge has degree 2. Therefore the 12 edges incident to these vertices

would have to be in a Hamilton circuit if there were one. If we draw these 12 edges, however, we see that they

form two circuits, each with six edges. Therefore there is no re-entrant knight's tour. However, we can splice

these two circuits together by using an edge from a middle vertex in the top row to a middle vertex in the

bottom row (and omitting two edges adjacent to this edge). The result is the knight's tour shown here.

3 6 9 12

8 11 4 1

5 2 7 10

380 Chapter 10 Graphs

61. We give an ad hoc argument by contradiction, using the notation shown in the following diagram. We think

of the board as a graph and need to decide which edges need to be in a purported Hamilton path.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

There are only two moves from each of the four corner squares. If we put in all of the edges 1-10, 1-7, 16-10,

and 16-7, then a circuit is complete too soon, so at least one of these edges must be missing. Without loss of

generality, then, we may assume that the endpoints of the path are 1 and either 4 or 13, and that the path
contains all of the edges 1-10, 10-16, and 16-7. Now vertex (square) 3 has edges only to squares 5, 10, and

12; and square 10 already has its two incident edges. Therefore 3-5 and 3-12 must be in the Hamilton path.

Similarly, edges 8-2 and 8-15 must be in the path. Now square 9 has edges only to squares 2, 7, and 15. If

there were to be edges to both 2 and 15, then a circuit would be completed too soon (2-9-15-8-2). Therefore

the edge 9-7 must be in the path, thereby giving square 7 its full complement of edges. But now square 14 is
forced to be joined in the path to squares 5 and 12, and this completes a circuit too soon (5-14-12-3-5). Since

we have reached a contradiction, we conclude that there is no Hamilton path.

63. An m x n board contains mn squares. If both m and n are odd, then it contains an odd number of squares.

By Exercise 62, the corresponding graph is bipartite. Exercise 55 told us that the graph does not contain a

Hamilton circuit. Therefore there is no re-entrant knight's tour (see Exercise 58b).

65. This is a proof by contradiction. We assume that G satisfies Ore's inequality that deg(x) + deg(y) ~ n

whenever x and y are nonadjacent vertices in G, but G does not have a Hamilton circuit. We will end up

with a contradiction, and therefore conclude that under these conditions, G must have a Hamilton circuit.

a) Since G does not have a Hamilton circuit, we can add missing edges one at a time in such a way that

we do not obtain a graph with a Hamilton circuit. We continue this process as long as possible. Clearly it

cannot go on forever, because once we've formed the complete graph by adding all missing edges, there is a

Hamilton circuit (recall that n :'.:': 3). Whenever the process stops, we have obtained a graph H with the

desired property. (Note that H might equal G itself-in other words, we add no edges. However, H cannot

be complete, as just noted.)

b) Add one more edge to H. By the construction in part (a), we now have a Hamilton circuit, and clearly

this circuit must use the edge we just added. The path consisting of this circuit with the added edge omitted

is clearly a Hamilton path in H.

c) Clearly v1 and Vn are not adjacent in H, since H has no Hamilton circuit. Therefore they are not adjacent

in G. But the hypothesis was that the sum of the degrees of vertices not adjacent in G was at least n. This

inequality can be rewritten as n - deg(Vn) :::; deg(v1). But n - deg(Vn) is just the number of vertices not

adjacent to Vn .

d) Let's make sure we understand what this means. If, say, v7 is adjacent to v1, then v6 is in S. Note that

v1 E S, since v2 is adjacent to v1. Also, Vn is not in S, since there is no vertex following Vn in the Hamilton

path. Now each one of the deg(v1) vertices adjacent to v1 gives rise to an element of S, so S contains deg(v1)

vertices.

e) By part (c) there are at most deg(vi) - 1 vertices other than Vn not adjacent to Vn, and by part (d)
there are deg(v1) vertices in S, none of which is Vn. So S has more vertices other than Vn than there are

vertices not adjacent to Vn; in other words, at least one vertex of S is adjacent to Vn. By definition, if Vk is

Section 10. 7 Planar Graphs 385

that P(i) is maximized and following the C links.

SECTION 10.7 Planar Graphs
As with Euler and Hamilton circuits and paths, the topic of planar graphs is a classical one in graph theory.

The theory (Euler's formula, Kuratowski's theorem, and their corollaries) is quite beautiful. It is easy to ask

extremely difficult questions in this area, however-see Exercise 27, for example. In practice. there are very
efficient algorithms for determining planarity that have nothing to do with Kuratowski's theorem, but they

are quite complicated and beyond the scope of this book. For the exercises here, the best way to show that a

graph is planar is to draw a planar embedding; the best way to show that a graph is nonplanar is to flnd a

subgraph homeomorphic to Ks or K 3,3 . (Usually it will be K 3 ,3 .)

1. The question is whether Ks,2 is planar. It clearly is so, since we can draw it in the xy-plane by placing the

five vertices in one part along the x-axis and the other two vertices on the positive and negative y-axis.

3. For convenience we label the vertices a, b, c, d, e, starting with the vertex in the lower left corner and proceeding

clockwise around the outside of the figure as drawn in the exercise. This graph is just K 2 ,3 ; the picture below

shows it redrawn by moving vertex c down.

5. This is K 3 ,3 , with parts {a, d, !} and {b, c, e}. Therefore it is not planar.

7. This graph can be untangled if we play with it long enough. The following picture gives a planar representation

of it.

9. If one has access to software such as The Geometer's Sketchpad, then this problem can be solved by drawing

the graph and moving the points around, trying to find a planar drawing. If we are unable to find one, then

we look for a reason why-either a subgraph homeomorphic to K 5 or one homeomorphic to K3,3 (always try

the latter first). In this case we find that there is a homeomorphic copy of K3,3, with vertices b, g, and i in

one set and a, f, and h in the other; all the edges are there except for the edge bh, and it is represented by

the path beh.

11. We give a proof by contradiction. Suppose that there is a planar representation of Ks, and let us call the

vertices v1 , v2 , ... , v5 . There must be an edge from every vertex to every other. In particular, v1 , v2,

v3 , v4 , v5 , v1 must form a pentagon. The pentagon separates the plane into two regions, an inside and an

outside. The edge from v1 to v3 must be present, and without loss of generality let us assume it is drawn on

the inside. Then there is no way for edges { v2 , v4 } and { v2 , v5 } to be in the inside, so they must be in the

outside region. Now this prevents edges {v1 ,v4 } and {v3 ,vs} from being on the outside. But they cannot

both be on the inside without crossing. Therefore there is no planar representation of K 5 .

386 Chapter 10 Graphs

13. We apply Euler's formula r = e - v + 2. Here we are told that v = 6. We are also told that each vertex has
degree 4, so that the sum of the degrees is 24. Therefore by the handshaking theorem there are 12 edges, so

e = 12. Solving, we find r = 8.

15. The proof is very similar to the proof of Corollary 1. First note that the degree of each region is at least 4.
The reason for this is that there are no loops or multiple edges (which would give regions of degree 1 or 2) and
no simple circuits of length 3 (which would give regions of degree 3); and the degree of the unbounded region

is at least 4 since we are assuming that v 2:: 3. Therefore we have, arguing as in the proof of Corollary 1,

that 2e 2:: 4r, or simply r :S e/2. Plugging this into Euler's formula, we obtain e - v + 2 :S e/2, which gives

e :S 2v - 4 after some trivial algebra.

17. The proof is exactly the same as in Exercise 15, except that this time the degree of each region must be at

least 5. Thus we get 2e ;:::: 5r, which after the same algebra as before, gives the desired inequality.

19. a) If we remove a vertex from K 5 , then we get K 4 , which is clearly planar.

b) If we remove a vertex from K 6 , then we get K 5 , which is not planar.

c) If we remove a vertex from K3,3, then we get K 3 ,2 , which is clearly planar.

d) We assume the question means ''Is it the case that for every v, the removal of v makes the graph planar?"

Then the answer is no, since we can remove a vertex in the part of size 4 to leave K3,3 , which is not planar.

21. This graph is planar and hence cannot be homeomorphic to K 3 ,3 .

23. The instructions are really not fair. It is hopeless to try to use Kuratowski's theorem to prove that a graph is

planar, since we would have to check hundreds of cases to argue that there is no subgraph homeomorphic to

K 5 or K 3 ,3 . Thus we will show that this graph is planar simply by giving a planar representation. Note that

it is Q3.

b g

f c

25. This graph is nonplanar, since it contains K 3 ,3 as a subgraph: the parts are {a, g, d} and {b, c, e}. (Actually

it contains K 3 ,4, and it even contains a subgraph homeomorphic to K 5 .)

27. This is an extremely hard problem. We will present parts of the solution; the reader should consult a good

graph theory book, such as Gary Chartrand, Linda Lesniak and Ping Zhang's Graphs f3 Digraphs, fifth edition

(Chapman & Hall/CRC Press, 2011), for references and further details.

First we will state, without proof, what is known about crossing numbers for complete graphs (much is

still not known about crossing numbers). If n :S 10, then the crossing number of Kn is given by the following

product

~l%J ln;lj ln;2J ln;3J.
Thus the answers for parts (a), (b), and (c) are 1 , 3, and 9, respectively. The figure below shows K 6 drawn

in the plane with three crossings, which at least proves that the crossing number of K 6 is at most 3. The

Section 10. 7 Planar Graphs 387

proof that it is not less than 3 is not easy. The embedding of Ks with one crossing can be seen in this same

picture, by ignoring the vertex at the top.

Second, for the complete bipartite graphs, what is known is that if the smaller of m and n is at most 6,

then the crossing number of Km,n is given by the following product

Thus the answers for parts (d), (e), and (f) are 2, 4, and 16, respectively. The figure below shows K 4 ,4

drawn in the plane with four crossings, which at least proves that the crossing number of K 4 ,4 is at most 4.

The proof that it is not less than 4 is, again, difficult. It is also easy to see from this picture that the crossing

number of K3,4 is at most 2 (by ignoring the top vertex).

29. Let us follow the hint, and draw all the edges with straight line segments. This clearly produces a drawing of

Km,n. We will show that the number of crossings is mn(m - 2)(n - 2)/16, and that will complete the proof.

(Incidentally, it is not known whether this upper bound is actually the crossing number. No one has found

an embedding with fewer crossings, but only in the case in which the smaller of m and n is at most 6 has

it been proved that it cannot be done. See the comments in the solution to Exercise 27.) In order to count

the crossings, it is enough to count the crossings occurring in the first quadrant and multiply by 4. Let us

label the points on the positive x-axis with the numbers 1 through m/2, and those on the y-axis with the

numbers 1 through n/2. Ifwe choose any two distinct numbers, say a and b with a< b, from 1 to m/2, and

any two distinct numbers, say r and s with r < s, from 1 through n/2, then we get exactly one crossing in

our graph, namely between the edges as and br. (There is no crossing between ar and bs .) So the number

of crossings in the first quadrant is the same as the number of ways to make these choices, which is clearly

C(m/2, 2) · C(n/2, 2). So the total number of crossings is 4 times this quantity, namely

which easily simplifies to

4 · C(m/2, 2) · C(n/2, 2) = 4 · T (~ - l)

mn(m - 2)(n - 2)
16

~ (~ - 1)
2

31. Each of these graphs is nonplanar; the first three contain Ks, and the last three contain K 3 ,3 . Thus if we can

show how to draw each of the graphs in two planes, then we will have shown that the thickness is 2 in each

388 Chapter 10 Graphs

case. The following picture shows that K 7 can be drawn in 2 planes, so this takes care of part (a), part (b),
and part (c).

5 3

The following picture shows that K 5 ,5 can be drawn in 2 planes, so this takes care of part (d), part (e), and

part (f).

5 d 4 d 3 0 5

c
4 e

0

b b

e

33. The formula is certainly valid for n :::; 4, so let us assume that n > 4. By Exercise 32, the thickness of Kn is
at least

C(n,2) = n(n-1)/2 = n(n- l) = ~ (n+ 1 + _2_)
3n-6 3n-6 6(n-2) 6 n-2

rounded up. Since this quantity is never an integer, it equals one more than itself rounded down, namely

1 (2) n+7 2
6 n + 1 + n - 2 + 1 = -6- + 6(n - 2)

rounded down. The last term can be ignored: it is always less than 1/6 and therefore will not influence the

rounding process (since the first term has denominator 6). Thus we have proved that the thickness of Kn is

at least l(n + 7)/6J.

35. This follows immediately from Exercise 34, since Km,n has mn edges and m+n vertices and, being bipartite,

has no triangles.

37. We can represent the surface of a torus with a rectangle, thinking of the right-hand edge as being equal to

the left-hand edge, and the top edge as being equal to the bottom edge. For example, if we travel out of the

rectangle across the right-hand edge about a third of the way from the top, then we immediately reenter the
rectangle across the left-hand edge about a third of the way from the top. The picture below shows K 3 ,3

drawn on this surface. Note that the edges that seem to leave the rectangle really reenter it from the opposite

side.

Section 10.8 Graph Coloring 389

SECTION 10.8 Graph Coloring

Like the problem of finding Hamilton paths, the problem of finding colorings with the fewest possible colors

probably has no good algorithm for its solution. In working these exercises, for the most part you should

proceed by trial and error, using whatever insight you can gain by staring at the graph (for instance, finding

large complete subgraphs). There are also some interesting exercises here on coloring the edges of graphs-see

Exercises 21-26. Exercises 29-31 are worth looking at, as well: they deal with a fast algorithm for coloring a

graph that is not guaranteed to produce an optimal coloring.

1. We construct the dual graph by putting a vertex inside each region (but not in the unbounded region), and

drawing an edge between two vertices if the regions share a common border. The easiest way to do this is

illustrated in our answer. First we draw the map, then we put a vertex inside each region and make the

connections. The dual graph, then, is the graph with heavy lines.

The number of colors needed to color this map is the same as the number of colors needed to color the dual

graph. Since A, B, C, and D are mutually adjacent, at least four colors are needed. We can color each of

the vertices (i.e., regions) A, B, C, and D a different color, and we can give Ethe same color as we give C.

3. We construct the dual as in Exercise 1.

As in Exercise 1, the number of colors needed to color this map is the same as the number of colors needed

to color the dual graph. Three colors are clearly necessary, because of the triangle ABC, for instance.

Furthermore three colors suffice, since we can color vertex (region) A red, vertices B, D, and F blue, and

vertices C and E green.

5. For Exercises 5-11, in order to prove that the chromatic number is k, we need to find a k-coloring and to

show that (at least) k colors are needed. Here, since there is a triangle, at least 3 colors are needed. Clearly

3 colors suffice, since we can color a and d the same color.

7. Since there is a triangle, at least 3 colors are needed. Clearly 3 colors suffice, since we can color a and c the

same color.

9. Since there is an edge, at least 2 colors are needed. The coloring in which b, d, and e are red and a and c

blue shows that 2 colors suffice.

11. Since there is a triangle, at least 3 colors are needed. It is not hard to construct a 3-coloring. We can let a,

f, h, j, and n be blue; let b, d, g, k, and m be green; and let c, e, i, l, and o be yellow.

13. If a graph has an edge (not a loop, since we are assuming that the graphs in this section are simple), then

its chromatic number is at least 2. Conversely, if there are no edges, then the coloring in which every vertex

receives the same color is proper. Therefore a graph has chromatic number 1 if and only if it has no edges.

390 Chapter 10 Graphs

15. In Example 4 we saw that the chromatic number of Cn is 2 if n is even and 3 if n is odd. Since the wheel

vVn is just Cn with one more vertex, adjacent to all the vertices of the Cn along the rim of the wheel, Wn

clearly needs exactly one more color than Cn (for that middle vertex). Therefore the chromatic number of
vVn is 3 if n is even and 4 if n is odd.

17. Consider the graph representing this problem. The vertices are the 8 courses, and two courses are joined by

an edge if there are students taking both of them. Thus there are edges between every pair of vertices except
the 7 pairs listed. It is much easier to draw the complement than to draw this graph itself; it is shown below.

473 185

213•
102.--~~~---:•195

101

We want to find the chromatic number of the graph whose complement we have drawn; the colors will be the

time periods for the exams. First note that since Math 185 and the four CS courses form a Ks (in other
words, there are no edges between any two of these in our picture), the chromatic number is at least 5. To
show that it equals 5, we just need to color the other three vertices. A little trial and error shows that we

can make Math 195 the same color as (i.e., have its final exam at the same time as) CS 101; and we can make

Math 115 and 116 the same color as CS 473. Therefore five time slots (colors) are sufficient.

19. We model the problem with the intersection graph of these sets. Note that every pair of these intersect except

for C4 and Cs. Thus the graph is K 6 with that one edge deleted. Clearly its chromatic number is 5, since

we need to color all the vertices different colors, except that C4 and Cs may have the same color. In other

words, 5 meeting times are needed, since only committees C4 and Cs can meet simultaneously.

21. Note that the number of colors needed to color the edges is at least as large as the largest degree of a vertex,

since the edges at each vertex must all be colored differently. Hence if we can find an edge coloring with that

many colors, then we know we have found the answer. In Exercise 5 there is a vertex of degree 3, so the edge

chromatic number is at least 3. On the other hand, we can color {a, c} and { b, d} the same color, so 3 colors

suffice. In Exercise 6 the 6 edges incident to g must all get different colors. On the other hand, it is not

hard to complete a proper edge coloring with only these colors (for example, color edge {a, f} with the same

color as used on { d, g}) , so the answer is 6. In Exercise 7 the answer must be at least 3; it is 3 since edges

that appear as parallel line segments in the picture can have the same color. In Exercise 8 clearly 4 colors

are required, since the vertices have degree 4. In fact 4 colors are sufficient. Here is one proper 4-coloring

(we denote edges in the obvious shorthand notation): color 1 for ac, be, and df; color 2 for ae, bd, and cf;

color 3 for ab, cd, and e f; and color 4 for ad, bf, and ce. In Exercise 9 the answer must be at least 3;

it is easy to construct a 3-coloring of the edges by inspection: {a, b} and { c, e} have the same color, {a, d}

and { b, c} have the same color, and {a, e} and { c, d} have the same color. In Exercise 10 the largest degree

is 6 (vertex i has degree 6); therefore at least 6 colors are required. By trial and error we come up with this

coloring using 6 colors (we use the obvious shorthand notation for edges); there are many others, of course.

Assign color 1 to ag, cd, and hi; color 2 to ab, cf, dg, and ei; color 3 to bh, cg, di, and ef; color 4 to

ah, ci, and de; color 5 to bi, ch, and f g; and color 6 to ai, be, and gh. Finally, in Exercise 11 it is easy

to construct an edge-coloring with 4 colors; again the edge chromatic number is the maximum degree of a

vertex.

Despite the appearances of these examples, it is not the case that the edge chromatic number of a graph

is always equal to the maximum degree of the vertices in the graph. The simplest example in which this is not

Section 10.8 Graph Coloring 391

true is K 3 . Clearly its edge chromatic number is 3 (since all three edges are adjacent to each other), but its

maximum degree is 2 . There is a theorem, however, stating that the edge chromatic number is always equal

to either the maximum degree or one more than the maximum degree.

23. a) The n-cycle's edges are just like the n-cycle's vertices (each adjacent to the next as we go around the

cycle), so the edge chromatic number is the same, namely 2 if n is even and 3 if n is odd, as in Example 4.

b) The edge chromatic number is at least n, because the radial edges are all pairwise adjacent and therefore
must all have distinct colors. Suppose we call these colors 1 through n proceeding clockwise. We need no

additional colors for the edges of the cycle, because we can color the edge adjacent to the spokes colored 1

and 2 with color 3 and proceed clockwise with colors 4, 5, ... , n - 1, n, 1, and 2. Therefore x' (Wn) = n.

25. Two edges that have the same color share no endpoints. Therefore if more than n/2 edges were colored the
same, the graph would have more than 2(n/2) = n vertices.

27. This problem can be modeled with the intersection graph of the sets of steps during which the variables must

be stored. This graph has 7 vertices, t through z; there is an edge between two vertices if the two variables
they represent must be stored during some common step. The answer to the problem is the chromatic number

of this graph. Rather than considering this graph, we look at its complement (it has a lot fewer edges). Here

two vertices are adjacent if the sets (of steps) do not intersect. The only edges are {u,w}, {u,x}, {u,y},

{u,z}, {v,x}, {x,z}. Note that there are no edges in the complement joining any two of {t,v,w,y,z}, so
that these vertices form a K 5 in the original graph. Thus the chromatic number of the original graph is at
least 5. To see that it is 5, note that vertex u can have the same color as w, and x can have the same color

as z (these pairs appear as edges in the complement). Since the chromatic number is 5, we need 5 registers,

with variables u and w sharing a register, and vertices x and z sharing one.

29. First we need to list the vertices in decreasing order of degree. This ordering is not unique, of course; we will

pick e,a,b,c,f,h,i,d,g,j. Next we assign color 1 toe, and then to f and d, in that order. Now we assign

color 2 to a, c, i, and g, in that order. Finally, we assign color 3 to b, h and j , in that order. Thus the

algorithm gives a 3-coloring. Since the graph contains triangles, we know that this is the best possible, so the

algorithm "worked" here (but it need not always work-see Exercise 27).

31. A simple example in which the algorithm may fail to provide a coloring with the minimum number of colors

is C6 , which of course has chromatic number 2. Since all the vertices are of degree 2, we may order them v1 ,

v4, v2, v3, v5, V6, where the edges are { V1, v2}, { v2, v3}, { V3, v4}, { V4, v5}, { V5, V6}, and { v1, v6}. Then V1

gets color 1, as does V4. Next V2 and v 5 get color 2; and then V3 and v6 must get color 3.

33. We need to show that the wheel Wn when n is an odd integer greater than 1 can be colored with four colors,
but that any graph obtained from it by removing one edge can be colored with three colors. Four colors

are needed to color this graph, because three colors are needed for the rim (see Example 4), and the center

vertex, being adjacent to all the rim vertices, will require a fourth color. To complete the proof that Wn is

chromatically 4-critical, we must show that the graph obtained from Wn by deleting one edge can be colored
with three colors. There are two cases. If we remove a rim edge, then we can color the rim with two colors,

by starting at an endpoint of the removed edge and using the colors alternately around the portion of the rim

that remains. The third color is then assigned to the center vertex. On the other hand, if we remove a spoke

edge, then we can color the rim by assigning color #1 to the rim endpoint of the removed edge and colors #2

and #3 alternately to the remaining vertices on the rim, and then assign color #1 to the center.

392 Chapter 10 Graphs

35. We give a proof by contradiction. Suppose that G is chromatically k-critical but has a vertex v of degree

k - 2 or less. Remove from G one of the edges incident to v. By definition of "k-critical," the resulting

graph can be colored with k - 1 colors. Now restore the missing edge and use this coloring for all vertices

except v. Because we had a proper coloring of the smaller graph, no two adjacent vertices have the same

color. Furthermore, v has at most k - 2 neighbors, so we can color v with an unused color to obtain a proper
(k - 1)-coloring of G. This contradicts the fact that G has chromatic number k. Therefore our assumption

was wrong, and every vertex of G must have degree at least k - 1.

37. a) Note that vertices d, e, and f are mutually adjacent. Therefore six different colors are needed in a 2-tuple

coloring, since each of these three vertices needs a disjoint set of two colors. In fact it is easy to give a coloring
with just six colors: Color a, d, and g with {1,2}; color c and e with {3,4}; and color band f with {5,6}.

Thus x2(G) = 6.

b) This one is trickier than part (a). There is no coloring with just six colors, since if there were, we would

be forced (without loss of generality) to color d with {l, 2}; e with {3, 4}; f with {5, 6}; then g with {l, 2},

b with {5,6}, and c with {3,4}. This gives no free colors for vertex a. Now this may make it appear that

eight colors are required, but a little trial and error shows us that seven suffice: Color a with {2, 4}; color

b and f with {5, 6}; color d with {l, 2}; color c with {3, 7}; color e with {3, 4}; and color g with {l, 7}.

Thus x2(H) = 7.

c) This is similar to part (a). Here nine colors are necessary and sufficient, since a, d, and g can get one

set of three colors; b and f can get a second set; and c and e can get a third set. Clearly nine colors are
necessary to color the triangles.

d) First we construct a coloring with 11 colors: Color a with {3, 6, 11}; color b and f with {7, 8, 9}; color

d with {1, 2, 3}; color c with { 4, 5, 10}; color e with { 4, 6, 11}; and color g with {l, 2, 5}. To prove that

x3 (H) = 11, we must show that it is impossible to give a 3-tuple coloring with only ten colors. If such a

coloring were possible, without loss of generality we could color d with {l, 2, 3}, e with { 4, 5, 6}, f with
{7, 8. 9}, and g with {l, 2, 10}. Now nine colors are needed for the three vertices a, b, and c, since they form

a triangle; but colors 1 and 2 are already used in vertices adjacent to all three of them. Therefore at least

9 + 2 = 11 colors are necessary.

39. The frequencies are the colors, the zones are the vertices, and two zones that are so close that interference
would be a problem are joined by an edge in the graph. Then it is clear that a k-tuple coloring is exactly an

assignment of frequencies that avoids possible interference.

41. We use induction on the number of vertices of the graph. Every graph with five or fewer vertices can be colored

with five or fewer colors, since each vertex can get a different color. That takes care of the basis case(s). So
we assume that all graphs with k vertices can be 5-colored and consider a graph G with k + 1 vertices. By

Corollary 2 in Section 10.7, G has a vertex v with degree at most 5. Remove v to form the graph G'. Since

G' has only k vertices, we 5-color it by the inductive hypothesis. If the neighbors of v do not use all five

colors, then we can 5-color G by assigning to v a color not used by any of its neighbors. The difficulty arises

if v has five neighbors, and each has a different color in the 5-coloring of G'. Suppose that the neighbors of

v, when considered in clockwise order around v, are a, b, c, m, and p. (This order is determined by the

clockwise order of the curves representing the edges incident to v .) Suppose that the colors of the neighbors

are azure, blue, chartreuse, magenta, and purple, respectively. Consider the azure-chartreuse subgraph (i.e.,

the vertices in G colored azure or chartreuse and all the edges between them). If a and c are not in the same

component of this graph, then in the component containing a we can interchange these two colors (make the

azure vertices chartreuse and vice versa), and G' will still be properly colored. That makes a chartreuse, so

we can now color v azure, and G has been properly colored. If a and c are in the same component, then

there is a path of vertices alternately colored azure and chartreuse joining a and c. This path together with

Review Questions 393

edges av and vc divides the plane into two regions, with b in one of them and m in the other. If we now

interchange blue and magenta on all the vertices in the same region as b, we will still have a proper coloring

of G', but now blue is available for v. In this case, too, we have found a proper coloring of G. This completes

the inductive step, and the theorem is proved.

43. We follow the hint. Because the measures of the interior angles of a pentagon total 540°, there cannot be as
many as three interior angles of measure more than 180° (reflex angles). If there are no reflex angles, then

the pentagon is convex, and a guard placed at any vertex can see all points. If there is one reflex angle, then

the pentagon must look essentially like figure (a) below, and a guard at vertex v can see all points. If there

are two reflex angles, then they can be adjacent or nonadjacent (figures (b) and (c)); in either case, a guard

at vertex v can see all points. (In figure (c), choose the reflex vertex closer to the bottom side.) Thus for all

pentagons, one guard suffices, so g(5) = 1.

v

(a) (c)

45. The figure suggested in the hint (generalized to have k prongs for any k ~ 1) has 3k vertices. Consider
the set of points from which a guard can see the tip of the first prong, the set of points from which a guard

can see the tip of the second prong, and so on. These are disjoint triangles (together with their interiors).

Therefore a separate guard is needed for each of the k prongs, so at least k guards are needed. This shows

that g(3k) ~ k = l3k/3J. To handle values of n that are not multiples of 3, let n = 3k + i, where i = 1

or 2. Then obviously g(n) ~ g(3k) ~ k = Ln/3J.

GUIDE TO REVIEW QUESTIONS FOR CHAPTER 10
1. a) See pp. 641 ~642 and Table 1 in Section 10. b) See Exercise 1 in Section 10 .1.

2. See all the examples Section 10.l.

3. See Theorem 1 in Section 10.2.

4. See Theorem 2 in Section 10.2.

5. See Theorem 3 in Section 10.2.

6. a) See Example 5 in Section 10.2.

c) See Example 6 in Section 10.2.

e) See Example 8 in Section 10.2.

7. a) n, C(n, 2) b) m+n, mn

8. a) See p. 656.

b) See Example 13 in Section 10.2.

d) See Example 7 in Section 10.2.

c) n, n d) n + 1, 2n

c) (See also Example 12 and Exercise 66 in Section 10.2.) The following algorithm is an efficient way to

determine whether a connected graph can be 2-colored (which is the same thing as saying that it is bipartite);

apply it to each component of the given graph. First color any vertex red. Then color all vertices adjacent

to this vertex blue. Then look at all vertices adjacent to these just-colored blue vertices. If any of them are

already colored blue, then stop and declare the graph not to be bipartite; otherwise color all the uncolored

ones red. Next look at all vertices adjacent to all the vertices just colored red. If any of them are already

Section 11.1 Introduction to Trees

SECTION 11.1 Introduction to Trees

CHAPTER 11
Trees

403

These exercises give the reader experience working with tree terminology, and in particular with the relation

ships between the height and the numbers of vertices, leaves, and internal vertices of a tree. Exercise 13 should

be done to get a feeling for the structure of trees. One good way to organize your enumeration of trees (such

as all nonisomorphic trees with five vertices) is to focus on a particular parameter, such as the length of a

longest path in the tree. This makes it easier to include all the trees and not count any of them twice. Review

the theorems in this section before working the exercises involving the relationships between the height and

the numbers of vertices, leaves, and internal vertices of a tree. For a challenge that gives a good feeling for

the flavor of arguments in graph theory, the reader should try Exercise 43. In many ways trees are recursive

creatures, and Exercises 45 and 46 are worth looking at in this regard.

1. a) This graph is connected and has no simple circuits, so it is a tree.

b) This graph is not connected, so it is not a tree.

c) This graph is connected and has no simple circuits, so it is a tree.

d) This graph has a simple circuit, so it is not a tree.

e) This graph is connected and has no simple circuits, so it is a tree.

f) This graph has a simple circuit, so it is not a tree.

3. a) Vertex a is the root, since it is drawn at the top.

b) The internal vertices are the vertices with children, namely a, b, c, d, f, h , j , q, and t.

c) The leaves are the vertices without children, namely e, g, i, k, l, m, n, o, p, r, s, and u.

d) The children of j are the vertices adjacent to j and below j, namely q and r.

e) The parent of h is the vertex adjacent to h and above h, namely c.

f) Vertex o has only one sibling, namely p, which is the other child of o's parent, h.

g) The ancestors of m are all the vertices on the unique simple path from m back to the root, namely f, b,

and a.

h) The descendants of b are all the vertices that have b as an ancestor, namely e, f, l, m, and n.

5. This is not a full m-ary tree for any m. It is an m-ary tree for all m 2". 3, since each vertex has at most 3

children, but since some vertices have 3 children, while others have 1 or 2, it is not full for any m.

7. We can easily determine the levels from the drawing. The root a is at level 0. The vertices in the row below

a are at level 1, namely b, c, and d. The vertices below that, namely e through k (in alphabetical order),

are at level 2. Similarly l through r are at level 3, s and t are at level 4, and u is at level 5.

9. We describe the answers, rather than actually drawing pictures.

a) The subtree rooted at a is the entire tree, since a is the root.

b) The subtree rooted at c consists of five vertices-the root c, children g and h of this root, and grandchildren
o and p-and the four edges cg, ch, ho, and hp.

c) The subtree rooted at e is just the vertex e.

404 Chapter 11 Trees

11. We find the answer by carefully enumerating these trees, i.e., drawing a full set of nonisomorphic trees. One

way to organize this work so as to avoid leaving any trees out or counting the same tree (up to isomorphism)

more than once is to list the trees by the length of their longest simple path (or longest simple path from the

root in the case of rooted trees).

a) There is only one tree with three vertices, namely K1,2 (which can also be thought of as the simple path

of length 2).

b) With three vertices, the longest path from the root can have length 1 or 2. There is only one tree of each
type, so there are exactly two nonisomorphic rooted trees with 3 vertices, as shown below.

13. We find the answer by carefully enumerating these trees, i.e., drawing a full set of nonisomorphic trees. One

way to organize this work so as to avoid leaving any trees out or counting the same tree (up to isomorphism)

more than once is to list the trees by the length of their longest simple path (or longest simple path from the

root in the case of rooted trees).

a) If the longest simple path has length 4, then the entire tree is just this path. If the longest simple path
has length 3, then the fifth vertex must be attached to one of the middle vertices of this path. If the longest

simple path has length 2, then the tree is just K 1,4 . Thus there are only three trees with five vertices. They

can be pictured as the first, second, and fourth pictures in the top row below.

b) For rooted trees of length 5, the longest path from the root can have length 1 , 2 , 3 or 4. There is only

one tree with longest path of length 1 (the other four vertices are at level 1), and only one with longest path

of length 4. If the longest path has length 3, then the fifth vertex (after using four vertices to draw this

path) can be "attached" to either the root or the vertex at level 1 or the vertex at level 2, giving us three

nonisomorphic trees. If the longest path has length 2, then there are several possibilities for where the fourth

and fifth vertices can be "attached." They can both be adjacent to the root; they can both be adjacent to

the vertex at level 1; one can be adjacent to the root and the other to the vertex at level 1; or one can be

adjacent to the root and the other to this vertex: in all there are four possibilities in this case. Thus there are

a total of nine nonisomorphic rooted trees on 5 vertices, as shown below.

15. a) We will prove this statement using mathematical induction on n, the number of vertices of G. (This

exercise can also be done by using Exercise 14 and Theorem 2. Such a proof is given in the answer section

of the textbook.) If n = 1, then there is only one possibility for G, it is a tree, it is connected, and it has

1 - 1 = 0 edges. Thus the statement is true. Now let us assume that the statement is true for simple graphs

with n vertices, and let G be a simple graph with n + 1 vertices.

There are two things to prove here. First let us suppose that G is a tree; we must show that G is

connected and has (n + 1) - 1 = n edges. Of course G is connected by definition. In order to prove that G

Section 11.1 Introduction to Trees 405

has the required number of edges, we need the following fact: a tree with at least one edge must contain a

vertex of degree 1. (To see that this is so, let P be a simple path of greatest possible length; since the tree
has no simple circuits, such a maximum length simple path exists. The ends of this path must be vertices of
degree 1, since otherwise the simple path could be extended.) Let v be a vertex of degree 1 in G, and let

G' be G with v and its incident edge removed. Now G' is still a tree: it has no simple circuits (since G had

none) and it is still connected (the removed edge is clearly not needed to form paths between vertices different

from v). Therefore by the inductive hypothesis, G', which has n vertices, has n - 1 edges; it follows that G,
which has one more edge than G', has n edges.

Conversely, suppose that G is connected and has n edges. If G is not a tree, then it must contain a

simple circuit. If we remove one edge from this simple circuit, then the resulting graph (call it G') is still

connected. If G' is a tree then we stop; otherwise we repeat this process. Since G had only finitely many

edges to begin with, this process must eventually terminate at some tree T with n + 1 vertices (T has all the
vertices that G had). By the paragraph above, T therefore has n edges. But this contradicts the fact that

we removed at least one edge of G in order to construct T. Therefore our assumption that G was not a tree

is wrong, and our proof is complete.

b) For the "only if" direction, suppose that G is a tree. By part (a), G has n - 1 edges, and by definition, G
has no simple circuits. For the "if" direction, suppose that G has no simple circuits and has n - 1 edges. The
only thing left to prove is that G is connected. Let c equal the number of components of G, each of which is

necessarily a tree, say with n, vertices, where L~=l n, = n. By part (a), the total number of edges in G is

L~=l (n, - 1) = n - c. Since we are given that this equals n - 1, it follows that c = 1, i.e., G is connected.

17. Since a tree with n vertices has n - 1 edges, the answer is 9999.

19. Each internal vertex has exactly 2 edges leading from it to its children. Therefore we can count the edges by

multiplying the number of internal vertices by 2. Thus there are 2 · 1000 = 2000 edges.

21. We can model the tournament as a full binary tree. Each internal vertex represents the winner of the game

played by its two children. There are 1000 leaves, one for each contestant. The root is the winner of the entire

tournament. By Theorem 4(iii), with m = 2 and l = 1000, we see that i = (l - 1)/(m - 1) = 999. Thus

exactly 999 games must be played to determine the champion.

23. Let P be a person sending out the letter. Then 10 people receive a letter with P's name at the bottom of the

list (in the sixth position). Later 100 people receive a letter with P's name in the fifth position. Similarly,

1000 people receive a letter with P's name in the fourth position, and so on, until 1,000,000 people receive

the letter with P's name in the first position. Therefore P should receive $1,000,000. The model here is a

full 10-ary tree.

25. No such tree exists. Suppose it did. By Theorem 4(zii), we know that a tree with these parameters must have

i = 83/(m -1) internal vertices. In order for this to be a whole number, m -1 must be a divisor of 83. Since

83 is prime, this means that m = 2 or m = 84. If m = 2, then we can have at most 15 vertices in all (the

root, two at level 1 , four at level 2, and eight at level 3). So m cannot be 2 . If m = 84, then i = 1 , which

tells us that the root is the only internal vertex, and hence the height is only 1 , rather than the desired 3.

These contradictions tell us that no tree with 84 leaves and height 3 exists.

27. The complete binary tree of height 4 has 5 rows of vertices (levels 0 through 4), with each vertex not in

the bottom row having two children. The complete 3-ary tree of height 3 has 4 rows of vertices (levels 0

through 3), with each vertex not in the bottom row having three children.

406 Chapter 11 Trees

29. For both parts we use algebra on the equations n = i + l (which is true by definition) and n =mi+ 1 (which

is proved in Theorem 3).

a) That n = mi + 1 is one of the given equations. For the second equality here, we have l = n - i =
(mi+ 1) - i = (m - l)i + 1.

b) If we subtract the two given equations, then we obtain 0 = (1 - m)i + (l - 1) , or (m - 1)i = l - 1. It follows

that i = (l - 1) / (m - 1). Then n = i + l = [(l - 1) / (m - 1)] + l = (l - 1 + lm - l) / (m - 1) = (lm - 1) / (m - 1).

31. In each of the t trees, there is one fewer edge than there are vertices. Therefore altogether there are t fewer

edges than vertices. Thus there are n - t edges.

33. The number of isomers is the number of nonisomorphic trees with the given numbers of atoms. Since the
hydrogen atoms play no role in determining the structure (they simply are attached to each carbon atom in

sufficient number to make the degree of each carbon atom exactly 4), we need only look at the trees formed

by the carbon atoms. In drawing our answers, we will show the tree of carbon atoms in heavy lines, with the

hydrogen atom attachments in thinner lines.

a) There is only one tree with three vertices (up to isomorphism), the path of length 2. Thus the answer is 1.

The heavy lines in this diagram of the molecule form this tree.

b) There are 3 nonisomorphic trees with 5 vertices: the path oflength 4, the "star" K 1 ,4 , and the tree that

consists of a path of length 3 together with one more vertex attached to one of the middle vertices in the

path. Thus the answer is 3. Again the heavy lines in the diagrams of the molecules form these trees.

c) We need to find all the nonisomorphic trees with 6 vertices, except that we must not count the (one) tree

with a vertex of degree 5 (since each carbon can only be attached to four other atoms). The complete set of

trees is shown below (the heavy lines in these diagrams). Thus the answer is 5.

Section 11.1 Introduction to Trees

·UJII·
· I UJ I ·

·II II II·

35. a) The parent of a vertex v is the directory in which the file or directory represented by v is contained.

407

b) The child of a vertex v (and v must represent a directory) is a file or directory contained in the directory
that v represents.

c) If u and v are siblings, then the files or directories that u and v represent are in the same directory.

d) The ancestors of vertex v are all directories in the path from the root directory to the file or directory

represented by v.

e) The descendants of a vertex v are all the files and directories either contained in v, or contained in
directories contained in v, etc.

f) The level of a vertex v tells how far from the root directory is the file or directory represented by v.

g) The height of the tree is the greatest depth (i.e., level) at which a file or directory is buried in the system.

37. Suppose that n = 2k, where k is a positive integer. We want to show how to add n numbers in log n steps

using a tree-connected network of n - 1 processors (recall that log n means log2 n). Let us prove this by

mathematical induction on k. If k = 1 there is nothing to prove, since then n = 2 and n - 1 = 1, and

certainly in log 2 = 1 step we can add 2 numbers with 1 processor. Assume the inductive hypothesis, that

we can add n = 2k numbers in log n steps using a tree-connected network of n - 1 processors. Suppose now
that we have 2n = 2k+l numbers to add, x 1 , x 2 , ... , x 2,,. The tree-connected network of 2n - 1 processors

consists of the tree-connected network of n - 1 processors together with two new processors as children of

each leaf in the (n - 1)-processor network. In one step we can use the leaves of the larger network to add

xi + X2, X3 + X4, ... , X2n-1 + X2n. This gives us n numbers. By the inductive hypothesis we can now use

the rest of the network to add these numbers using log n steps. In all, then, we used 1 + (log n) steps, and,

just as desired, log(2n) = log 2 + log n = 1 +log n. This completes the proof.

39. We need to compute the eccentricity of each vertex in order to find the center or centers. In practice, this does

not involve much computation, since we can tell at a glance when the eccentricity is large. Intuitively, the

center or centers are near the "middle" of the tree. The eccentricity of vertex c is 3, and it is the only vertex

with eccentricity this small. Indeed, vertices a and b have eccentricities 4 and 5 (look at the paths to l);

vertices d, f, g , j , and k all have eccentricities at least 4 (again look at the paths to l); and vertices e, h,

i, and l also all have eccentricities at least 4 (look at the paths to k). Therefore c is the only center.

41. See the comments for the solution to Exercise 39. The eccentricity of vertices c and h are both 3. The

eccentricities of the other vertices are all at least 4. Therefore c and h are the centers.

43. Certainly a tree has at least one center, since the set of eccentricities has a minimum value. First we prove

that if u and v are any two distinct centers (say with minimum eccentricity e), then u and v are adjacent.

Let P be the unique simple path from u to v. We will show that P is just u, v. If not, let c be any other

vertex on P. Since the eccentricity of c is at least e, there is a vertex w such that the unique simple path

Q from c to w has length at least e. This path Q may follow P for awhile, but once it diverges from P it

cannot rejoin P without there being a simple circuit in the tree. In any case, Q cannot follow P towards

408 Chapter 11 'Ire es

both u and v, so suppose without loss of generality that it does not follow P towards u. Then the path from

u to c and then on to w is simple and of length greater than e, a contradiction. Thus no such c exists, and

u and v are adjacent.

Finally, to see that there can be no more than two centers, note that we have just proved that every two
centers are adjacent. If there were three (or more) centers, then we would have a K 3 contained in the tree,

contradicting the definition that a tree has no simple circuits.

45. We follow the recursive definition and produce the following pictures for T3 through T7 (of course T1 and T2

are both the tree with just one vertex). For example, T3 has T2 (a single vertex) as its left subtree and T1

(again a single vertex) as its right subtree.

47. This "proof" shows that there exists a tree with n vertices having a path of length n - 1. Note that the

inductive step correctly takes the tree whose existence is guaranteed by the inductive hypothesis and correctly

constructs a tree of the desired type. However, the statement was that every tree with n vertices has a path
of length n - 1, and this was not shown. A proof of the inductive step would need to start with an arbitrary

tree with n + 1 vertices and show that it had the required path. Of course no such proof is possible, since

the statement is not true. Douglas West, whose Introduction to Graph Theory is an excellent book on that

subject, calls this mistake the induction trap.

SECTION 11.2 Applications of Trees

'Irees find many applications, especially in computer science. This section and subsequent ones deal with

some of these applications. Binary search trees can be built up by adding new vertices one by one; searches

in binary search trees are accomplished by moving down the tree until the desired vertex is found, branching

either right or left as necessary. Huffman codes provide efficient means of encoding text in which some symbols
occur more frequently than others; decoding is accomplished by moving down a binary tree. The coin-weighing

problems presented here are but a few of the questions that can be asked. 'Iry making up some of your own

and answering them; it is easy to ask quite difficult questions of this type.

Section 11.3 Tree Traversal 417

~1

* * * =+* +t
6-5:1 5-5:0 4-5:-1 6-5=1 5-5:0

#2

* =fat: * =i+ *" 4-6:-2 6-6:0 5-6:-1 6-6:0 5-6:-1

SECTION 11.3 Tree Traversal

Tree traversal is central to computer science applications. Trees are such a natural way to represent arithmetical

and algebraic formulae, and so easy to manipulate, that it would be difficult to imagine how computer scientists

could live without them. To see if you really understand the various orders, try Exercises 26 and 27. You need

to make your mind work recursively for tree traversals: when you come to a subtree, you need to remember

where to continue after processing the subtree. It is best to think of these traversals in terms of the recursive

algorithms (shown as Algorithms 1, 2, and 3). A good bench-mark for testing your understanding of recursive

definitions is provided in Exercises 30-34.

1. The root of the tree is labeled 0. The children of the root are labeled 1, 2, ... , from left to right. The

children of a vertex labeled a are labeled a.1, a.2, ... , from left to right. For example, the two children

of the vertex 1 here are 1.1 and 1.2. We completely label the tree in this manner, from the top down. See

the figure. The lexicographic order of the labels is the preorder of the vertices: after each vertex come the

subtrees rooted at its children, from left to right. Thus the order is 0 < 1<1.1<1.2 < 2 < 3 .

. A
l\1?•2 •3

1.1 1.2

3. See the comments for the solution to Exercise 1. The order is 0 < 1 < 1.1 < 1.2 < 1.2.1 < 1.2.1.1 < 1.2.1.2 <
1.2.2 < 1.2.3 < 1.2.3.1 < 1.2.3.2 < 1.2.3.2.1 < 1.2.3.2.2 < 1.2.3.3 < 2 < 2.1.

0

1.1

1. 2. 3. 2.1 1. 2. 3. 2. 2

418 Chapter 11 Trees

5. The given information tells us that the root has two children. We have no way to tell how many vertices are

in the subtree of the root rooted at the first of these children. Therefore we have no way to tell how many

vertices are in the tree.

7. In preorder, the root comes first, then the left subtree in preorder, then the right subtree in preorder. Thus the

preorder is a, followed by the vertices of the left subtree (the one rooted at b) in preorder, then c. Recursively,

the preorder in the subtree rooted at b is b, followed by d, followed by the vertices in the subtree rooted at

e in preorder, namely e, f, g. Putting this all together, we obtain the answer a,b,d,e,f,g,c.

9. See the comments in the solution to Exercise 7 for the procedure. The only difference here is that some vertices

have more than two children: after listing such a vertex, we list the vertices of its subtrees, in preorder, from

left to right. The answer is a.b,e,k,l,m,f,g,n,r,s,c,d,h,o,i,j,p,q.

11. Inorder traversal requires that the left-most subtree be traversed first, then the root, then the remaining

subtrees (if any) from left to right. Applying this principle, we see that the list must start with the left subtree

in inorder. To find this, we need to start with its left subtree, namely d. Next comes the root of that subtree,

namely b, and then the right subtree in inorder. This is i, followed by the root e, followed by the subtree

rooted at j in inorder. This latter listing is m, j, n, o. We continue in this manner, ultimately obtaining:

d, b, i, e, m, j, n, o, a, f, c, g, k, h, p, l.

13. In postorder, the root comes last, following the left subtree in postorder and the right subtree in postorder.

Thus the postorder is the vertices of the left subtree (the one rooted at b) in postorder, then c, then a.

Recursively, the postorder in the subtree rooted at b is d, followed by the vertices in the subtree rooted at e

in postorder, namely f, g, e. followed by b. Putting this all together, we obtain the answer d, f, g, e, b, c, a.

15. This is just like Exercises 13 and 14. Note that all subtrees of a vertex are completed before listing that vertex.

The answer is k,l,m,e,f,r,s,n,g,b,c,o,h,i,p,q,j,d,a.

17. a) For the first expression, we note that the outermost operation is the second addition. Therefore the root

of the tree is this plus sign, and the left and right subtrees are the trees for the expressions being added. The

first operand is the sum of x and xy, so the left subtree has a plus sign for its root and the tree for the

expressions x and xy as its subtrees. We continue in this manner until we have drawn the entire tree. The

second tree is done similarly. Note that the only difference between these two expressions is the placement of

parentheses, and yet the expressions represent quite different operations, as can be seen from the fact that the

trees are quite different.

/+~/
I\ I\

x * x y

/\
x y

+

/ \/
/\

+ y

/\
* x
/\

x y

b) We can read off the answer from the picture we have just drawn simply by listing the vertices of the tree

in preorder: First list the root, then the left subtree in preorder, then the right subtree in preorder. Therefore

the answer is + + x * x y / x y. Similarly, the second expression in prefix notation is + x / + * x y x y.

c) We can read off the answer from the picture we have just drawn simply by listing the vertices of the tree in

postorder: First list the left subtree in postorder, then the right subtree in postorder, then the root. Therefore

the answer is x x y * + x y / + . Similarly, the second expression in postfix notation is xx y * x + y / + .

Section 11.3 Tree Traversal 419

d) The infix expression is just the given expression, fully parenthesized, with an explicit symbol for multipli

cation. Thus the first is ((x + (x * y)) + (x/y)), and the second is (x + (((x * y) + x)/y)). This corresponds

to traversing the tree in inorder, putting in a left parenthesis whenever we go down to a left child and putting

in a right parenthesis whenever we come up from a right child.

19. This is similar to Exercise 17, with set operations rather than arithmetic ones.
a) We construct the tree in the same way we did there, noting, for example, that the first minus is the
outermost operation.

/~
n u

/'\ I'\
A B A -

I\
B A

b) The prefix expression is obtained by traversing the tree in preorder: - n ABU A - BA.

c) The postfix expression is obtained by traversing the tree in postorder: AB n AB A - u - .
d) This is already in fully parenthesized infix notation except for needing an outer set of parentheses: ((A n
B)-(AU(B-A))).

21. Either of the four operators can be the outermost one, so there are four cases to consider. If the first operator

is the outermost one, then we need to compute the number of ways to fully parenthesize B - An B - A. Here

there are 5 possibilities: 1 in which the "n" symbol is the outermost operator and 2 with each of the " - "

symbols as the outermost operator. If the second operator in our original expression is the outermost one,

then the only choice is in the parenthesization of the second of its operands, and there are 2 possibilities. Thus

there are a total 7 ways to parenthesize this expression if either of the first two operators are the outermost

one. By symmetry there are another 7 if the outermost operator is one of the last two. Therefore the answer

to the problem is 14.

23. We show how to do these exercises by successively replacing the first occurrence of an operator immediately

followed by two operands with the result of that operation. (This is an alternative to the method suggested

in the text, where the last occurrence of an operator, which is necessarily preceded by two operands, is acted

upon first.) The final number is the value of the entire prefix expression. In part (a), for example, we first

replace / 8 4 by the result of dividing 8 by 4, namely 2, to obtain - * 2 2 3. Then we replace * 2 2 by the

result of multiplying 2 and 2, namely 4, to obtain the third line of our calculation. Next we replace - 4 3

by its answer, 1, which is the final answer.

a)

b)

-*2/843

-*223

- 4 3

1

i-*33*425

j-9*425

i - 9 8 5

i 1 5

1

420

c)

d)

+-j32j23/6-42

+-9j23/6-42

+-98/6-42

+1/6-42

+ 1 I 6 2

+ 13

4

*+3+3i3+333

*+3+3j363

* + 3 + 3 729 3

* + 3 732 3

* 735 3

2205

Chapter 11 Trees

25. We slowly use the clues to fill in the details of this tree, shown below. Since the preorder starts with a, we

know that a is the root, and we are told that a has four children. Next, since the first child of a comes

immediately after a in preorder, we know that this first child is b. We are told that b has one child, and it
must be f, which comes next in the preorder. We are told that f has no children, so we are now finished
with the subtree rooted at b. Therefore the second child of a must be c (the next vertex in preorder). We

continue in this way until we have drawn the entire tree.

b e

f
g h 1

k

27. We prove this by induction on the length of the list. If the list has just one element, then the statement is

trivially true. For the inductive step, consider the end of the list. There we find a sequence of vertices, starting

with the last leaf and ending with the root of the tree, each vertex being the last child of its successor in the

list. We know where this sequence starts, since we are told the number of children of each vertex: it starts at

the last leaf in the list. Now remove this leaf, and decrease the child count of its parent by 1. The result is

the postorder and child counts of a tree with one fewer vertex. By the inductive hypothesis we can uniquely

determine this smaller tree. Then we can uniquely determine where the deleted vertex goes, since it is the last

child of its parent (whom we know).

29. In each case the postorder is c, d, b, f, g, h, e, a.

31. We prove this by induction on the recursive definition, in other words, on the length of the formula, i.e., the

total number of symbols and operators. The only formula of length 1 arises from the base case of the recursive

definition (part (i)), and in that case we have one symbol and no operators, so the statement is true. Assume

Section 13.1 Languages and Grammars

CHAPTER 13
Modeling Computation

SECTION 13.1 Languages and Grammars

457

There is no magical way to come up with the grammars to generate a language described in English. In

particular, Exercises 15 and 16 are challenging and very worthwhile. Exercise 21 shows how grammars can

be combined. In constructing grammars, we observe the rule that every production must contain at least one
nonterminal symbol on the left. This allows us to know when a derivation is completed-namely, when the

string we have generated contains no nonterminal symbols.

1. The following sequences of lines show that each is a valid sentence.

a) sentence
noun phrase intransitive verb phrase

article adjective noun intransitive verb phrase

article adjective noun intransitive verb

the adjective noun intransitive verb

the happy noun intransitive verb

the happy hare intransitive verb
the happy hare runs

b) sentence

noun phrase intransitive verb phrase

article adjective noun intransitive verb phrase

article adjective noun intransitive verb adverb

the adjective noun intransitive verb adverb

the sleepy noun intransitive verb adverb
the sleepy tortoise intransitive verb adverb

the sleepy tortoise runs adverb

the sleepy tortoise runs quickly

c) sentence

noun phrase transitive verb phrase noun phrase

article noun transitive verb phrase noun phrase
article noun transitive verb noun phrase

article noun transitive verb article noun

the noun transitive verb article noun
the tortoise transitive verb article noun
the tortoise passes article noun

the tortoise passes the noun

the tortoise passes the hare

d) sentence
noun phrase transitive verb phrase noun phrase
article adjective noun transitive verb phrase noun phrase

article adjective noun transitive verb noun phrase

458 Chapter 13

article adjective noun transitive verb article adjective noun
the adjective noun transitive verb article adjective noun
the sleepy noun transitive verb article adjective noun
the sleepy hare transitive verb article adjective noun

the sleepy hare passes article adjective noun

the sleepy hare passes the adjective noun
the sleepy hare passes the happy noun
the sleepy hare passes the happy tortoise

Modeling Computation

3. Since runs is only an intransitive verb, it can only occur in a sentence of the form noun phrase intran

sitive verb phrase. Such a sentence cannot have anything except an adverb after the intransitive verb,

and the sleepy tortoise cannot be an adverb.

5. a) It suffices to give a derivation of this string. We write the derivation in the obvious way. S ==> IA ==>
lOB ==> lOlA ==> lOlOB ==> 10101.

b) This follows from our solution to part (c), because 10110 has two 1 's in a row and is not of the form

discussed there.

c) Notice that the only production with A on the left is A---+ OB. Furthermore, the only productions with
B on the left are B ---+ IA and B ---+ 1 . Combining these, we see that we can eliminate B and replace

these three rules by A ---+ OIA and A ---+ 01. This tells us that every string in the language generated by G

must end with some number of repetitions of 01 (at least one). Furthermore, because of the rules S---+ OA

and S ---+ IA, the string must start with either a 0 or a 1 preceding the repetitions of 01. Therefore the

strings in this language consist of a 0 or a 1 followed by one or more repetitions of 01. We can write this as

{ O(Ol)n In 2': 0} U { l(Ol)n In 2': 0}

7. We write the derivation in the obvious way. S ==> OSI ==> OOSll ==> OOOSlll ==> 000111. We used the rule
S ---+ OSI in the first three steps and S ---+ ,\ in the last step.

9. a) Using G1 , we can add O's on the left or l's on the right of S. Thus we have S ==>OS==> OOS ==> OOSl ==>

OOSll ==> OOSlll ==> OOSllll ==> 001111.

b) In this grammar we must add all the O's first to S, then change to an A and add the 1 's, again on the

left. Thus we have S ==>OS==> OOS ==> OOIA ==> 0011A ==> 00111A ==> 001111.

11. First we apply the first rule twice and the rule S---+ ,\to get OOABAB. We can then apply the rule BA---+ AB,
to get OOAABB. Now we can apply the rules OA ---+ 01 and IA ---+ 11 to get 0011BB; and then the rules

IB ---+ 12 and 2B ---+ 22 to end up with 001122, as desired.

13. In each case we will list only the productions, because V and T will be obvious from the context, and S
speaks for itself.

a) For this finite set of strings, we can simply have S ---+ 0, S ---+ 1, and S ---+ 11 .

b) We assume that "only l's" includes the case of no l's. Thus we can take simply S---+ IS and S---+ >..

c) The middle can be anything we like, and we will let A represent the middle. Then our productions are

S---+ OAI, A-+ IA, A-+ OA, and A-+>..

d) We will let A represent the pairs of l's. Then our productions are S---+ OA, A---+ llA, and A---+>..

15. a) We need to add the O's two at a time. Thus we can take the rules S ---+ BOO and S ---+ ,\.

b) We can use the same first rule as in part (a), namely S---+ BOO, to increase the number of O's. Since the

string must begin 10, we simply adjoin to this the rule S ---+ 10.

Section 13.1 Languages and Grammars 459

c) We need to add O's and l's two at a time. Furthermore, we need to allow for O's and l's to change their

order. Since we cannot have a rule 01 __, 10 (there being no nonterminal symbol on the left), we make up

nonterminal analogs of 0 and 1, calling them A and B, respectively. Thus our rules are as follows: S __, AAS,
S __, BBS, AB __, BA, BA __, AB, S __, ,\, A __, 0, and B __, 1. (There are also totally different ways to

approach this problem, which are just as effective.)

d) This one is fairly simple: S __, OOOOOOOOOOA, A __, OA, A __, .A. This assures at least 10 O's and allows

for any number of additional O's.

e) We need to invoke the trick used in part (c) to allow O's and l's to change their order. Furthermore, since
we need at least one extra 0, we use S __, A as our vanishing condition, rather than S __, ,\. Our solution,

then, is S_,AS, S_,ABS, S_,A, AB_,BA, BA_,AB, A_,O,and B_,l.

f) This is identical to part (e), except that the vanishing condition is S __, ,\, rather than S __, A, and there
is no rule S __, AS.

g) We just put together two copies of a solution to part (e), one in which there are more O's than l's, and

one in which there are more l's than O's. The rules are as follows: S __,ABS, S __, T, S __, U, T __,AT,

T __, A, U __, BU, U __, B, AB __, BA, BA __, AB, A __, 0, and B __, 1.

17. In each case we will list only the productions, because V and T will be obvious from the context, and S
speaks for itself.

a) It suffices to have S __,OS and S __,.A.

b) We let A represent the string of l's. Thus we take S __,AO, A__, IA, and A__, .A. Notice that A__, Al

works just as well A__, IA here, so either one is fine.

c) It suffices to have S __, OOOS and S __, ,\.

19. a) This is a type 2 grammar, because the left-hand side of each production has a single nonterminal symbol.

It is not a type 3 grammar, because the right-hand side of the productions are not of the required type.

b) This meets the definition of a type 3 grammar.

c) This is only a type 0 grammar; it does not fit the definition of type 1 because the right side of the second

production does not maintain the context set by the left side.

d) This is a type 2 grammar, because the left-hand side of each production has a single nonterminal symbol.

It is not a type 3 grammar, because the right-hand side of the productions are not of the required type.

e) This meets the definition of a type 2 grammar. It is not of type 3, because of the production A__, B.

f) This is only a type 0 grammar; it does not fit the definition of type 1 because the right side of the second

production does not maintain the context set by the left side.

g) This meets the definition of a type 3 grammar. Note, however, that it does not meet the definition of a
type 1 grammar because of S __, ,\.

h) This is only a type 0 grammar; it does not fit the definition of type 1 because the right side of the third

production does not maintain the context set by the left side.

i) This is a type 2 grammar because each left-hand side is a single nonterminal. It is not type 3 because of
the production B __, ,\.

j) This is a type 2 grammar because each left-hand side is a single nonterminal. It is not type 3; each of the

productions violates the conditions imposed for a type 3 grammar.

21. Let us assume that the nonterminal symbols of G1 and G2 are disjoint. (If they are not, we can give those

in G2 , say, new names so that they will be; obviously this does not change the language that G2 generates.)

Call the start symbols S1 and S2. In each case we will define G by taking all the symbols and rules for G1

and G2, a new symbol S, which will be the start symbol for G, and the rules listed below.

a) Since we want strings that either G1 or G2 generate, we add the rules S __, S1 and S __, S2 .

460 Chapter 13 Modeling Computation

b) Since we want strings that consist of a string that G1 generates followed by a string that G2 generates,

we add the rule S----; S1S2.

c) This time we add the rules S ----; S1S and S ----; >.. This clearly gives us all strings that consist of the

concatenation of any number of strings that G1 generates.

23. We simply translate the derivations we gave in the solution to Exercise 1 to tree form, obtaining the following
pictures.

sentence -----------noun phrase intransitive verb phrase

/I----- I
article adjective noun intrunsitive verb

I I I I
the happy hare runs

(a)

sentence -----------noun phrase intransitive verb phrase

/I----- ~~
article adjective noun intransitive verb adverb

I I I I I
the sleepy tortoise runs quickly

(b)

sentence -------1--------noun phruse truns. verb. phruse noun phrase

/~ I /~
art. noun trans. verb art. noun
I I I I I

the tortoise passes the hare
(c)

sentence -------1--------noun phrase trans. verb. phrase noun phrase

/I~ I /I~
art. adj. noun trans. verb art. adj. noun
I I I I I I I

the sleepy hare passes the happy tortoise
(d)

25. We can assume that the derivation starts S :::;. AB :::;. CaB :::;. cbaB, or S :::;. AB :::;. CaB :::;. baB. This shows

that neither the string in part (b) nor the string in part (d) is in the language, since they do not begin cba
or ba. In order to derive the string in part (a), we need to turn B into ba, and this is easy, using the rule
B ----; Ba and then the rule B ----; b. Finally, for part (c), we again simply apply these two rules to change B
into ba.

27. This is straightforward. The - is the sign and the 109 is an integer, so the tree starts as shown. Then we

decompose the integer 109 into the digit 1 and the integer 09, then in turn to the digit 0 and the integer

(digit) 9.

<signed integer>
~~

<sign> <integer>

I ---------<digit> <integer>

I~~
1 <digit> <integer>

I I
0 <digit>

I
9

Section 13.l Languages and Grammars 461

29. a) Note that a string such as "34." is not allowed by this definition, but a string such as -02. 780 is. This

is pretty straightforward using the following rules. As can be seen, we are using (integer) to stand for a

nonnegative integer.

S--+ (sign)(integer)
S --+ (sign) (integer). (positive integer)
(sign) --+ +
(sign) --+ -

(integer) --+ (integer) (digit)
(integer) --+ (digit)

(positive integer) --+ (integer) (nonzero digit) (integer)
(positive integer) --+ (integer) (nonzero digit)

(positive integer) --+ (nonzero digit) (integer)
(positive integer) --+ (nonzero digit)
(digit) --+ (nonzero digit)
(digit) --+ 0

(nonzero digit) --+ 1

(nonzero digit) --+ 2
(nonzero digit) --+ 3

(nonzero digit) --+ 4

(nonzero digit) --+ 5

(nonzero digit) --+ 6

(nonzero digit) --+ 7

(nonzero digit) --+ 8

(nonzero digit) --+ 9

b) We combine rows of the previous answer with the same left-hand side, and we change the notation to

produce the answer to this part.

(signed decimal number)::= (sign)(integer) I (sign)(integer).(positive integer)
(sign) ::= + I -
(integer) ::= (integer)(digit) J (digit)
(positive integer) : : = (integer) (nonzero digit) (integer) J (integer) (nonzero digit)

J (nonzero digit) (integer) J (nonzero digit)

(digit)::= (nonzero digit) I 0

(nonzero digit)::= 1 I 2 J 3 I 4 J 5 I 6 I 7 I 8 J 9

c) We easily produce the following tree.

<signed dec1mel number>

<s1g~ \~integer>
I /~ I

<integer> <d1g1t> <nonzero d1g1t>

I I I
<d1g1t> I 4

I
3

31. a) We can think of appending letters to the end at each stage:

(identifier) : := (lcletter) I (identifier) (lcletter)

(lcletter) ::=a I b J c I · · · I z
b) We need to be more explicit here than in part (a) about how many letters are used:

(identifier) ::= (lcletter) (lcletter) (lcletter) I (lcletter) (lcletter) (lcletter) (lcletter) I
(lcletter) (lcletter) (lcletter) (lcletter) (lcletter) I

462 Chapter 13

(lcletter) (lcletter) (lcletter) (lcletter) (lcletter) (lcletter)

(lcletter) ::= a I b I c I · · · I z

c) This is similar to the part (b), allowing for two types of letters:
(identifier) : : = (ucletter) I (ucletter) (letter) I (ucletter) (letter) (letter) I

Modeling Computation

(ucletter) (letter) (letter) (letter) I (ucletter) (letter) (letter) (letter) (letter) I
(ucletter) (letter) (letter) (letter) (letter) (letter)

(letter) : : = (lcletter) I (ucletter)

(lcletter) ::= a I b I c I · · · I z

(ucletter) ::=A I BI CI··· I Z

d) This is again similar to previous parts. We need to invent a name for "digit or underscore."
(identifier) : := (lcletter) (dzgitorus) (alphanumeric) (alphanumeric) (alphanumeric) I

(lcletter) (digitorus) (alphanumeric) (alphanumeric) (alphanumeric) (alphanumeric)

(digitorus) ::=(digit) I -

(alphanumeric) ::= (letter) I (digit)

(letter) : : = (lcletter) I (ucletter)

(lcletter) ::=a I b I c I · · · I z

(ucletter) ::=A I BI CI · · · I Z

(digit) ::= o I i I 2 I · · · I 9

33. We create a name for ''letter or underscore" and then define an identifier to consist of one of those, followed

by any number of other allowed symbols. Note that an underscore by itself is a valid identifier, and there is

no prohibition on consecutive underscores.
(identifier)::= (letterorus) I (identifier)(symbol)

(symbol) ::= (letterorus) I (digit)

(letterorus) ::= (letter) I _

(letter) : : = (lcletter) I (ucletter)

(lcletter) : : = a I b I c I · · · I z

(ucletter) ::=A I BI CI ···I Z

(digit) ::= o 11 I 2 I · · · I 9

35. We assume that leading O's are not allowed in the whole number part, since the problem explicitly mentioned

them only for the decimal part. Our rules have to allow the optional sign using the question mark, the integer

part consisting of one or more digits, not beginning with a 0 unless 0 is the entire whole number part, and

then either the decimal part or not. Note that the decimal part has a decimal point followed by zero or more

digits.
numeral ::= sign? nonzerodigit digit* decimal? I sign? 0 decimal?

decimal::= .digit*

digit ::= 0 I nonzerodigit

sign::=+ I -

nonzerodigit ::= 1 J 2 I · · · I 9

37. We can simplify the answer given in Exercise 33 using the asterisk for repeating optional elements.
identifier ::= letterorus symbol*

symbol ::= letterorus I digit

letterorus ::= letter I _

letter ::= lcletter I ucletter

lcletter ::= a J b J c I · · · I z

ucletter ::=A I B IC I · · · I Z

digit ::= o 11 I 2 I · · · I 9

Section 13.1 Languages and Grammars 463

39. a) This string is generated by the grammar. The substring be* is a term, since it consists of the factor b

followed by the factor c followed by the mulOperator *. Thus the entire expression consists of two terms
followed by an addOperator. We can show the steps in the following sequence:

(expression)

(term) (term) (add Operator)

(!actor) (factor) (factor) (mulOperator) (add Operator)

(identifier) (identifier) (identifier) (mulOperator) (add Operator)

abc*+

b) This string is not generated by the grammar. The second plus sign needs two terms preceding it, and xy+

can only be deconstructed to be one term.

c) This string is generated by the grammar. The substring xy- is a factor, since it is an expression, namely
the term x followed by the term y followed by the add Operator - . Thus the entire expression consists of

two factors followed by a mulOperator. We can show the steps in the following sequence:

(expression)

(term)
(factor) (factor) (mulOperator)

(expression) (!actor) (m ulOperator)

(term) (term) (add Operator) (!actor) (mulOperator)

(!act or) (!actor) (add Operator) (!actor) (m ulOperator)

(identifier) (identifier) (add Operator) (identifier) (mulOperator)

XY-Z*

d) This is similar to part (c). The entire expression consists of two factors followed by a mulOperator; the

first of these factors is just w, and the second is the term x y z - *. That term, in turn, deconstructs as in

previous parts. We can show the steps in the following sequence:

(expression)

(term)
(!actor) (!actor) (m ulOperator)

(factor) (expression) (mulOperator)

(!actor) (term) (mulOperator)

(factor) (factor) (factor) (mulOperator) (mulOperator)

(factor) (factor) (expression) (mulOperator) (mulOperator)

(factor) (factor) (term) (term) (add Operator) (mulOperator) (mulOperator)

(factor) (factor) (factor) (factor) (add Operator) (mulOperator) (mulOperator)

(identifier) (identifier) (identifier) (identifier) (add Operator) (mulOperator) (mulOperator)

wxyz-*/

e) This string is generated as follows (similar to previous parts of this exercise):

(expression)

(term)
(factor) (factor) (mulOperator)

(!actor) (expression) (m ulOperator)

(factor) (term) (term) (addOperator) (mulOperator)

(factor) (factor) (factor) (addOperator) (mulOperator)
(identifier) (identifier) (identifier) (add Operator) (mulOperator)

ade-*

41. The answers will depend on the grammar given as the solution to Exercise 40. We assume here that the answer
to that exercise is very similar to the preamble to Exercise 39. The only difference is that the operators are

464 Chapter 13 Modeling Computation

placed between their operands, rather than behind them, and parentheses are required in expressions used as

factors.

a) This string is not generated by the grammar, because the addition operator can only be applied to two

terms, and terms that are themselves expressions must be surrounded by parentheses.

b) This string is generated by the grammar. The substrings a/band c/d are terms, so they can be combined
to form the expression. We show the steps in the following sequence:

(expression)

(term) (add Operator) (term)

(factor) (mulOperator) (!actor) (add Operator) (!actor) (mulOperator) (factor)

(identifier) (m ulOperator) (identifier) (add Operator) (identifier) (m ulOperator) (identifier)

a/b + c/d

c) This string is generated by the grammar. The substring (n + p) is a factor, since it is an expression

surrounded by parentheses. We show the steps in the following sequence:

(expression)

(term)
(factor) (mulOperator) (factor)

(factor) (mulOperator) ((expression))

(!actor) (m ulOperator) ((term) (add Operator) (term))
(!actor) (mulOperator) ((factor) (add Operator) (!actor))

(identifier) (mulOperator) ((identifier) (addOperator) (identifier))

m*(n+p)

d) There are several reasons that this string is not generated, among them the fact that it is impossible for

an expression to start with an operator in this grammar.

e) This is very similar to part (c):

(expression)

(term)

(factor) (mulOperator) (factor)

((expression)) (mulOperator) ((expression))

((term) (addOperator) (term))(mulOperator)((term) (addOperator) (term))
((factor) (add Operator) (!actor)) (mulOperator) ((factor) (add Operator) (!actor))

((identifier) (add Operator) (identifier)) (mulOperator) ((identifier) (add Operator) (identifier))

(m + n) * (p - q)

SECTION 13.2 Finite-State Machines with Output

Finding finite-state machines to do specific tasks is in essence computer programming. There is no set method

for doing this. You have to think about the problem for awhile, ask yourself what it might be useful for

the states to represent, and then very carefully proceed to construct the machine. Expect to have several
false starts. "Bugs" in your machines are also very common. There are of course many machines that will
accomplish the same task. The reader should look at Exercises 20~25 to see that it is also possible to build
finite-state machines with the output associated with the states, rather than the transitions.

Section 13.2 Finite-State Machines with Output 465

1. We draw the state diagrams by making a node for each state and a labeled arrow for each transition. In

part (a), for example, since under input 1 from state s2 we are told that we move to state s 1 and output

a 0, we draw an arrow from s2 to s1 and label it 1, 0. It is assumed that s0 is always the start state.

01,1

0,0

@
1,1

~@ 0,0

0,0 1,0
(1.1)

0°)
(;;\ (;;\ 1,1

~ ~---1~,1--@

'·'l ~I'· ''
start >ts;\ l,O 6)
~ 1,1

~
(c)

3. a) The machine starts in state s0 . Since the first input symbol is 0, the machine moves to state s1 and gives

0 as output. The next input symbol is 1 , so the machine moves to state s2 and gives 1 as output. The next

input is 1, so the machine moves to state s 1 and gives 0 as output. The fourth input is 1, so the machine

moves to state s2 and gives 1 as output. The fifth input is 0, so the machine moves to state s 1 and gives 0

as output. Thus the output is 01010.

b) The machine starts in state so. Since the first input symbol is 0, the machine moves to state s 1 and gives

0 as output. The next input symbol is 1, so the machine moves to state so and gives 1 as output. The next

input is 1, so the machine stays in state s0 and gives 0 as output. The fourth input is 1, so the machine

again stays in state so and gives 0 as output. The fifth input is 0, so the machine moves to state s 1 and

gives 0 as output. Thus the output is 01000.

c) The machine starts in state so. Since the first input symbol is 0, the machine stays in state s0 and gives

1 as output. The next input symbol is 1, so the machine moves to state s4 and gives 1 as output. The next

input is 1 , so the machine moves to state s0 and gives 0 as output. The fourth input is 1, so the machine

moves to state s4 and gives 1 as output. The fifth input is 0, so the machine moves to state s 1 and gives 1

as output. Thus the output is llOll.

5. a) The machine starts in state so. Since the first input symbol is 0, the machine moves to state s 1 and gives
1 as output. (This is what the arrow from so to s 1 with label 0, 1 means.) The next input symbol is 1.

Because of the edge from s 1 to s0 , the machine moves to state so and gives 1 as output. The next input

is 1 . Because of the loop at s0 , the machine stays in state s0 and gives output 0. The same thing happens

on the fourth input symbol. Therefore the output is 1100 (and the machine ends up in state s0).

b) This is similar to part (a). The first two symbols of input cause the machine to output two O's and remain

in state s0 . The third symbol causes an output of 1 as the machine moves into state s 1 . The fourth input

466 Chapter 13 Modeling Computation

takes us back to state so with output 1. The next four symbols of input cause the machine to give output

0110 as it goes to states s0 , s1 , s0 , and s0 , respectively. Therefore the output is 00110110.

c) This is similar to the other parts. The machine alternates between states s0 and s1 , outputting 1 for each
input. Thus the output is 11111111111.

7. We model this machine as follows. There are four possible inputs, which we denote by 5, 10, 25, and b,
standing for a nickel, a dime, a quarter, and a button labeled by a kind of soda pop, respectively. (Actually
the model is a bit more complicated, since there are three kinds of pop, but we will ignore that; to incorporate
the kind of pop into the model, we would simply have three inputs in place of just b.) The output can either

be an amount of money in cents~O, 5, 10, 15, 20, or 25--or can be a can of soda pop, which we denote c.

There will be eight states. Intuitively, state s, will represent the state in which the machine is indebted to the

customer by 5i cents. Thus s0 , the start state, will represent that the machine owes the customer nothing;
state s1 will represent that the machine has accepted 5 cents from the customer, and so on. State s 7 will
mean that the machine owes the customer 35 cents, which will be paid with a can of soda pop, at which time

the machine will return to state s0 , owing nothing. The following picture is the state diagram of this machine,

simplified even further in that we have eliminated quarters entirely for sake of readability. For example, the

transition from state s6 (30 cents credit) on input of a dime is to state s7 (35 cents credit) with the return

of 5 cents in change. We have also used a to stand for any monetary input: if you deposit any amount when
the machine already has your 35 cents, then you get that same amount back. Thus the transition a, a really
stands for three transitions: 5, 5 and 10, 10 and 25, 25.

9. We draw the diagram for this machine. Intuitively, we need four states, corresponding to the four possibilities
for what the last two bits have been. In our picture, state s1 corresponds to the last two bits having been
00; state s2 corresponds to the last two bits having been 01; state s3 corresponds to the last two bits having

been 10; state s4 corresponds to the last two bits having been 11. We also need a state so to get started, to

account for the delay. Let us see why some of the transitions are what they are. If you are in state s3, then

the last two bits have been 10. If you now receive an input 0, then the last two bits will be 00, so we need
to move to state s1 . Furthermore, since the bit received two pulses ago was a 1 (we know this from the fact

that we are in state s3), we need to output a 1. Also, since we are told to output 00 at the beginning, it is

right to have transitions from so as shown.

If we look at this machine, we observe that states s0 and s 1 are equivalent, i.e., they cause exactly the same

transitions and outputs. Therefore a simpler answer would be a machine like this one, but without state s0 ,

where state s1 is the start state.

Section 13.2 Finite-State Machines with Output 467

11. This machine is really only part of a machine; we are not told what happens after a successful log-on. Also,

the machine is really much more complicated than we are indicating here, because we really need a separate
state for each user. We assume that there is only one user. We also assume that an invalid user ID is rejected

immediately, without a request for a password. (The alternate assumption is also reasonable, that the machine

requests a password whether or not the ID is valid. In that case we obtain a different machine, of course.)

We need only two states. The initial state waits for the valid user ID. We let i be the valid user ID, and we

let j be any other input. If the input is valid, then we enter state s 1 , outputting the message e: "enter your
password." If the input is not valid, then we remain in state so, outputting the message t: "invalid ID; try
again." From state s 1 there are only two relevant inputs: the valid password p and any other input q. If the

input is valid, then we output the message w: "welcome" and proceed. If the input is invalid, then we output

the message a: "invalid password; enter user ID again" and return to state s0 to await another attempt at

logging-on.

13. This exercise is similar to Exercise 7. We let state s, for i = 0, 1, 2, 3, 4 represent the fact that 5i cents has

been deposited. When at least 25 cents has been deposited, we return to state s0 and open the gate. Nickels
(input 5), dimes (input 10) and quarters (input 25) are available. We let o and c be the outputs: the gate

is opened (for a limited time, of course), or remains closed. After the gate is opened, we return to state s0 .

(We assume that the gate closes after the car has passed.)

5,o 1 O,o
25,o

15. The picture for this machine would be too complex to draw. Instead, we will describe the machine verbally,
and even then we won't give every last gory detail. We assume that possible inputs are the ten digits. We will

let s0 be the start state and let s 1 be the state representing a successful call (so we will not list any outputs

from s 1). From s0 , inputs of 2, 3, 4, 5, 6, 7, or 8 send the machine back to s0 with output of an error message

for the user. From so an input of 0 sends the machine to state s 1 , with the output being that the 0 is sent

to the network. From so an input of 9 sends the machine to state s2 with no output; from there an input

of 1 sends the machine to state s3 with no output; from there an input of 1 sends the machine to state s 1

with the output being that the 911 is sent to the network. All other inputs while in states s2 or s3 send the

machine back to s0 with output of an error message for the user. From s0 an input of 1 sends the machine
to state s4 with no output; from s4 an input of 2 sends the machine to state s5 with no output; and this

path continues in a similar manner to the 911 path, looking next for 1, then 2, then any seven digits, at which

point the machine goes to state s1 with the output being that the ten-digit input is sent to the network. Any

"incorrect" input while in states s5 or s6 (that is, anything except a 1 while in s5 or a 2 while in s6) sends

the machine back to s0 with output of an error message for the user. Similarly, from s4 an input of 8 followed

by appropriate successors drives us eventually to s 1 , but inappropriate outputs drive us back to s0 with an

error message. Also, inputs while in state s4 other than 2 or 8 send the machine back so with output of an
error message for the user.

17. We interpret this problem as asking that a 1 be output if the conditions are met, and a 0 be output otherwise.

For this machine, we need to keep track of what the last two inputs have been, and we need four states to

468 Chapter 13 Modeling Computation

"store" this information. Let the states s 3 , s4 , s 5 , and S6 be the states corresponding to the last two inputs
having been 00, 10, 01, and 11, respectively. We also need some states to get started-to get us into one

of these four states. There are only two cases in which the output is 1: if we are in states s3 or s5 (so that

the last two inputs have been 00 or 01) and we receive a 1 as input. The transitions in our machine are the

obvious ones. For example, if we are in state s5 , having just read 01, and receive a 0 as input, then the last

two symbols read are now 10, so we move to state s4.

~
@~(9~(9

~: ''qt0? 1'··
1,0 (g~@~(g~
~1,0

As in Exercise 9, we can actually get by with a smaller machine. Note that here states s1 and s4 are equivalent,

as are states s2 and s6 • Thus we can merge each of these pairs into one state, producing a machine with
only five states. At that point, furthermore, state s0 is equivalent to the merged s2 and s6 , so we can omit

state so and make this other state the start state. The reader is urged to draw the diagram for this simpler

machine.

19. We need some notation to make our picture readable. The alphabet has 26 symbols in it. If a is a letter, then
by a we mean any letter other than a. Thus an arrow labeled a really stands for 25 arrows. The output
is to be 1 when we have just finished reading the word computer. Thus we need eight states, to stand for

the various stages of having read part of that word. The picture below gives the details, except that we have

omitted all the outputs except on inputs r and r; all the omitted ones are intended to be 0. The reader might

contemplate why this problem would have been harder if the word in question were something like baboon.

r, 1 f O

21. We construct the state table by having one row for each state. The arrows tell us what the values of the

transition function are. For example, since there is an arrow from s0 to s 1 labeled 0, the transition from s0

on input 0 is to s1 . Similarly, the transition from s0 on input 1 is to s2 . The output function values are

shown next to each state. Thus the output for state s0 is 1, the output for state s1 is 1, and the output for

state s2 is 0. The table is therefore as shown here.

Input

State 0 1 Output

so s1 Sz 1

S1 S1 so 1

Sz s1 Sz 0

23. a) The input drives the machine successively to states s1 , s0 , s1 , and s0 . The output is the output of the

start state, followed by the outputs of these four states, namely 11111.

b) The input drives the machine to state s2 , where it remains because of the loop. The output is the output

of the start state, followed by the output at state s2 six times, namely 1000000.

c) The states visited after the start state are, in order, s2 , s2 , s2 , s1 , s0 , s2 , s2 , s1 , s0 , s2 , and s2.

Therefore the output is 100011001100.

Section 13.3 Finite-State Machines with No Output 469

25. We can use a machine with just two states, one to indicate that there is an even number of l's in the input

string, the other to indicate that there is an odd number of l's in the string. Since the empty string has an
even number of l's, we make s0 (the start state) the state for an even number of l's. The output for this

state will be 1, as directed. The output from state s 1 will be 0 to indicate an odd number of l's. The input 1

will drive the machine from one state to the other, while the input 0 will keep the machine in its current state.

The diagram below gives the desired machine.

(:> (:>
start >G) ___ _.@

1 0

SECTION 13.3 Finite-State Machines with No Output

As in the previous section, many of these exercises are really exercises in programming. There is no magical

way to become a good programmer, but experience helps. The converse problem is also hard-finding a good

verbal description of the set recognized by a given finite-state automaton.

1. a) This is the set of all strings ab, where a E A and b E B. Thus it contains precisely 000, 001 , 1100, and

1101.

b) This is the set of all strings ba, where a E A and b E B. Thus it contains precisely 000, 0011, 010, and

0111.

c) This is the set of all strings a1 a2 , where a1 E A and a2 E A. Thus it contains precisely 00, 011, 110, and

1111.

d) This is the set of all strings b1b2b3 , where each b, EB. Thus it contains precisely 000000, 000001, 000100,

000101, 010000, 010001, 010100 and 010101.

3. Two possibilities are of course to let A be this entire set and let B = { >.}, and to let B be this entire set and

let A= { >.}. Let us find more. With a little experimentation we see that A={>., 10} and B = {10, 111, 1000}

also works, and it can be argued that there are no other solutions in which >. appears in either set. Finally,

there is the solution A = {l, 101} and B = {O, 11, 000}. It can be argued that there are no more. (Here is

how the first of these arguments goes. If >. E A, then necessarily >. tf:_ B. Hence the shortest string in B has

length at least 2, from which it follows that 10 E B. Now since the only other string in AB that ends with

10 is 1010, the only possible other string in A is 10. This leads to the third solution mentioned above. On

the other hand, if A E B, then A ~ A, so it must be that the shortest string in A is 10. This forces 111 to

be in A , and now there can be no other strings in B. The second argument is similar.)

5. a) One way to write this answer is { (10r I n = 0, 1, 2, ... } . It is the concatenation of zero or more copies of

the string 10.

b) This is like part (a). This set consists of all copies of zero or more concatenations of the string 111 .

In other words, it is the set of all strings of l's of length a multiple of 3. In symbols, it is { (lll)n I n =
0, 1, 2, ... } = { 13n I n = 0, 1, 2, ... }.

c) A little thought will show that this consists of all bit strings in which every 1 is immediately preceded by

a 0. No other restrictions are imposed, since 0 E A.

d) Because the 0 appears only in 101, the strings formed here have the property that there are at least two

l's between every pair of O's in the string, and the string begins and ends with a 1. All strings satisfying this

property are in A* .

470 Chapter 13 Modeling Computation

7. This follows directly from the definition. Every string w in A* consists of the concatenation of one or more

strings from A. Since A <:;;: B, all of these strings are also in B, so w is the concatenation of one or more

strings from B, i.e., is in B*.

9. a) This set contains all bit strings, so of course the answer is yes.

b) This set contains all strings consisting of any number of l's, followed by any number of O's, followed by
any number of l's. Since 11101 is such a string, the answer is yes.

c) Any string belonging to this set must start 110, and 11101 does not, so the answer is no.

d) All the strings in this set must in particular have even length. The given string has odd length, so the

answer is no.

e) The answer is yes. Just take one copy of each of the strings 111 and 0, together with the required string 1.

f) The answer is yes again. Just take 11 from the first set and 101 from the second.

11. In each case we will list the states in the order that they are visited, starting with the initial state. All we

need to do then is to note whether the place we end up is a final state (s0 or s3) or a nonfinal state. (It is

interesting to note that there are no transitions to s3 , so this state can never be reached.)

a) We encounter s0s1s2s0 , so this string is accepted.

b) We encounter sososos1s2, so this string is not accepted.

c) We encounter sos1s0s1s0s1s2s0 , so this string is accepted.

d) We encounter sosos1s2sos1s2sos1s2, so this string is not accepted.

13. a) The set in question is the set of all strings of zero or more O's. Since the machine in Figure 1 has s0 as a

final state, and since there is a transition from so to itself on input 0, every string of zero or more O's will

leave the machine in state s0 and will therefore be accepted. Therefore the answer is yes.

b) Since this set is a subset of the set in part (a), the answer must be yes.

c) One string in this set is the string 1 . Since an input of 1 drives the machine to the nonfinal state s1 , not

every string in this set is accepted. Therefore the answer is no.

d) One string in this set is the string 01. Since an input of 01 drives the machine to the nonfinal state s 1 ,

not every string in this set is accepted. Therefore the answer is no.

e) The answer here is no for exactly the same reason as in part (d).

f) The answer here is no for exactly the same reason as in part (c).

15. We use structural induction on the input string y. The basis step is y = ,\, and for the inductive step

we write y = wa, where w E I* and a E I. For the basis step, we have xy = x, so we must show that

f(s,x) = f(f(s,x),A). But part (i) of the definition of the extended transition function says that this is

true. We then assume the inductive hypothesis that the equation holds for shorter strings and try to prove

that f(s,xwa) = f(f(s,x),wa). By part (ii) of the definition, the left-hand side of this equation equals

f(f(s,xw),a). By the inductive hypothesis (because w is shorter than y), f(s,xw) = f(f(s,x),w), so

f(f(s, xw), a)= J(f(f(s, x), w), a). On the other hand, the right-hand side of our desired equality is, by part

(ii) of the definition, equal to f(f(f(s,x),w),a). We have shown that the two sides are equal, and our proof

is complete.

17. The only final state is s2 , so we need to determine which strings drive the machine to state s2 . Clearly the

strings 0, 10, and 11 do so, as well as any of these strings followed by anything else. Thus we can write the

answer as {O, 10, 11}{0, l}*.

19. A string is accepted if and only if it drives this machine to state s1 . Thus the string must consist of zero or

more O's, followed by a 1, followed by zero or more l's. In short, the answer is {om 1 n I m 2: 0 A n 2: 1 } .

Section 13.3 Finite-State Machines with No Output 471

21. Because so is final, the empty string is accepted. The strings that drive the machine to final state s3

are precisely {O}{l}*{O}. There are three ways to get to final state s4 , and once we get there, we stay

there. The path through s2 tells us that strings in { 10, 11}{0, 1} * are accepted. The path sos1 s3s4

tells us that strings in {0}{1}*{01}{0,1}* are accepted. And the path sos1s3s5s4 tells us that strings in

{0}{1}*{00}{0}*{1}{0, 1}* are accepted. Thus the language recognized by this machine is {A}U{O}{l}*{O}U
{10, 11}{0, 1}* u {0}{1}*{01}{0, 1}* u {0}{1}*{00}{0}*{1}{0, 1}*.

23. We want to accept only the strings that begin 01 . Let s2 be the only final state, and put transitions from s2

to itself on either input. We want to reach s2 after encountering 01, so put a transition from the start state

s0 to s1 on input 0, and a transition from s1 to s2 on input 1. Finally make a "graveyard" state s3, and
have the other transitions from so and s1 (as well as both transitions from s3) lead to s3 .

25. We can have a sequence of three states to record the appearance of 101. State s1 will signify that we have

just seen a 1; state s2 will signify that we have just seen a 1 followed by a 0; state S3 will be the only final

state and will signify that we have seen the string 101. Put transitions from s3 to itself on either input (it
doesn't matter what follows the appearance of 101). Put a transition from the start state so to itself on
input 0, because we are still waiting for a 1. Put a transition from s0 to s 1 on input 1 (because we have

just seen a 1). From s1 on input 0 we want to go to state s2 , but on input 1 we stay at s 1 because we have

still just seen a 1. Finally, from s2 , put a transition on input 1 to the final state s3 (success!), but on input

0 we have to start over looking for 101, so this transition must be back to s0 .

27. We can let state Si, for i = 0, 1, 2, 3 represent that exactly i O's have been seen, and state s4 will represent

that four or more O's have been seen. Only s3 will be final. For i = 0, 1, 2, 3, we transition from s, to itself

on input 1 and to s,+l on input 0. Both transitions from s4 are to itself.

29. We can let state s,, for i = 0, 1, 2, 3 represent that i consecutive 1 's have been seen. Only s3 will be final.

For i = 0, 1, 2, we transition from s, to Si+i on input 1 but back to s0 on input 0. Both transitions from s3

are to itself.

31. This is a little tricky. We want states at the start that prevent us from accepting a string if it does not start

with 11. Once we have seen the first two 1 's, we can accept the string if we do not encounter a 0 (after all,

the strings 11 and 111 do satisfy the condition). We can also accept the string if it has anything whatsoever

in the middle, as long as it ends 11. The machine shown below accomplishes all this. Note that S3 is a

graveyard state, and state s4 is where we "start over" looking for the final 11.

33. We need just two states, s0 to represent having seen an even number of O's (this will be the start state,

because to begin we have seen no O's), and s 1 to represent having seen an odd number of O's (this will be the
only final state). The transitions are from each state to itself on input 1, and from each state to the other on
input O.

472 Chapter 13 Modeling Computation

35. This is similar to Exercise 33, except that we need to look for the initial 0. Note that s3 is the graveyard.

37. We prove this by contradiction. Suppose that such a machine exists, with start state so and other state

s1 . Because the empty string is not in the language but some strings are accepted, we must have s 1 as the

only final state, with at least one transition from so to s1 . Because the string 0 is not in the language, any

transition from so on input 0 must be to itself, so there must be a transition from s0 to s 1 on input 1. But

this cannot happen, because the string 1 is not in the language. Having obtained a contradiction, we conclude
that no such finite-state automaton exists.

39. We want the new machine to accept exactly those strings that the original machine rejects, and vice versa. So

we simply change each final state to a nonfinal state and change each nonfinal state to a final state.

41. We use exactly the same machine as in Exercise 25, but make so, s1 , and s2 the final states and make s3
nonfinal.

43. First some general comments on Exercises 43-49: In general it is quite hard to describe succinctly languages

recognized by machines. An ad hoc approach is usually best. In this exercise there is only one final state, s2 ,

and only three ways to get there, namely on input 0, 01, or 11. Therefore the language recognized by this
machine is {O, 01, 11}.

45. Clearly the empty string is accepted. There are essentially two ways to get to the final state s2 • We can

go through state s 1 , and every string of the form on1 m, where n and m are positive integers, will take us
through state s1 on to s2 . We can also bypass state s1 , and every string of the form 01 m for m 2 0 will
take us directly to Sz. Thus our answer is {A} u { on1 m I n, m 2 1} u { 01 m I m 2 0}. Note that this can

also be written as { .x, o} u { on 1 m \ n, m 2 1 } .

47. First it is easy to see that all strings of the form ion for n 2 0 can drive the machine to the final state s1 .

Next we see that all strings of the form ioniom for n, m 2 0 can drive the machine to state s 3 . No other

strings can drive the machine to a final state. Therefore the answer is {ion \ n 2 0} U { 1oniom \ n, m 2 0}.

49. We notice first that state s2 is a final state, that once we get there, we can stay there, and that any string

that starts with a 0 can lead us there. Therefore all strings that start with a 0 are in the language. If the

string starts with a 1, then we must go first to state s 1 . If we ever leave state s1 , then the string will not be

accepted, because there are no paths out of s1 that lead to a final state. Therefore the only other strings that

are in the language are the empty string (because s0 is final) and those strings that can drive the machine to

state s1, namely strings consisting of all l's (we've already included those of the form 01*). Therefore the

language accepted by this machine is the union of the set of all strings that start with a 0 and the set of all
strings that have no O's.

51. One way to do Exercises 50-54 is to construct a machine following the proof of Theorem 1. Rather than do

that, we construct the machines in an ad hoc way, using the answers obtained in Exercises 43-47. Since A, 0,

and 1 are accepted by the nondeterministic automaton in Exercise 44, we make states s0 , s 1 , and s2 in the

Section 13.3 Finite-State Machines with No Output 473

following diagram final. States 8 3 and 8 4 provide for the acceptance of strings of the form 1 no for all n 2:: 1 .
State 8 5 , the graveyard state, assures that no other strings are accepted.

53. This machine is practically deterministic already, since there are no cases of ambiguous transitions (a given

input allowing transition to more than one state). All that keeps this machine from being deterministic is that

there are no transitions from certain states on certain inputs. Therefore to make this machine deterministic,

we just need to add a "graveyard" state, 8 3 , with transitions from s0 on input 0 and from 8 1 on input 1 to

this graveyard state, and transitions from s3 to itself on input 0 or 1. The graveyard state is not final, of
course.

55. a) We want to accept only the string 0. Let s 1 be the only final state, where we reach s 1 on input 0 from

the start state so. Make a "graveyard" state s2 , and have all other transitions (there are five of them in all)

lead there.

b) This uses the same idea as in part (a), but we need a few more states. The graveyard state is s4 . See the
picture for details.

start>G)-...:.o--4@ o ©
1 }~ © 01 @Jo,1

c) In the picture of our machine, we show a transition to the graveyard state whenever we encounter a 0.
The only final state is s2 , which we reach after 11 and remain at as long as the input consists just of 1 's.

start)@ 1 @ 1 ©)
~'l/

6)]0,1

57. Intuitively, the reason that a finite-state automaton cannot recognize the set of bit strings containing an equal

number of O's and l's is that there is not enough "memory" in the machine to keep track of how many extra

O's or l's the machine has read so far. Of course, this intuition does not constitute a proof-maybe we are

just not being clever enough to see how a machine could do this with a finite number of states. Instead, we

must give a proof of this assertion. See Exercises 22-25 of Section 13.4 for a development of what are called

"pumping lemmas" to handle various problems like this. (See also Example 6 in Section 13.4.)

The natural way to prove a negative statement such as this is by contradiction. So let us suppose that we

do have a finite-state automaton M that accepts precisely the set of bit strings containing an equal number of

O's and l's. We will derive a contradiction by showing that the machine must accept some illegal strings. The

474 Chapter 13 Modeling Computation

idea behind the proof is that since there are only finitely many states, the machine must repeat some states as

it computes. In this way, it can get into arbitrarily long loops, and this will lead us to a contradiction. To be

specific, suppose that AJ has n states. Consider the string on+11 n+i. As the machine processes this string,
it must encounter the same state more than once as it reads the first n + 1 O's (by the pigeonhole principle).
Say that it hits state s twice. Then some positive number, say k, of O's in the input drives M from state

s back to state s. But then the machine will end up at exactly the same place after reading on+i+k1 n+I as

it will after reading on+11 n+l, since those extra k O's simply drove it in a loop. Therefore since M accepts

on+i1 n+i, it also accepts on+I+k1n+i. But this is a contradiction, since this latter string does not have the
same number of 0 's as 1 's.

59. We know from Exercise 58d that the equivalence classes of Rk are a refinement of the equivalence classes

of Rk-I for each positive integer k. The equivalence classes are finite sets, and finite sets cannot be refined

indefinitely (the most refined they can be is for each equivalence class to contain just one state). Therefore
this sequence of refinements must stabilize and remain unchanged from some point onward. It remains to

show that as soon as we have Rn = Rn+ I, then Rn = Rm for all m > n, from which it follows that Rn = R*,

and so the equivalence classes for these two relations will be the same. By induction, it suffices to show that

if Rn = Rn+l , then Rn+l = Rn+2. By way of contradiction, suppose that Rn+l i- Rn+2. This means that

there are states s and t that are (n + 1)-equivalent but not (n + 2)-equivalent. Thus there is a string x of

length n + 2 such that, say, f(s, x) is final but f(t, x) is nonfinal. Write x =aw, where a EI. Then f(s, a)
and f (t, a) are not (n + 1)-equivalent, because w drives the first to a final state and the second to a nonfinal
state. But f(s, a) and f(t, a) are n-equivalent, because s and t are (n + 1)-equivalent. This contradicts the

fact that Rn = Rn+l , and our proof is complete.

61. a) By the way the machine Af was constructed, a string will drive M from the start state to a final state if
and only if that string drives M from the start state to a final state.

b) For a proof of this theorem, see a source such as Introduction to Automata Theory, Languages, and

Computation (2nd Edition) by John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman (Addison Wesley,

2000).

SECTION 13.4 Language Recognition

Finding good verbal descriptions of the set of strings generated by a regular expression is not easy; neither

is finding a good regular expression for a given verbal description. What Kleene's theorem says is that these

problems of "programming" in regular expressions are really the same as the programming problems for

machines discussed in the previous section. The pumping lemma, discussed in Exercise 22 and the three

exercises that follow it, is an important technique for proving that certain sets are not regular.

1. a) This regular expression generates all strings consisting of zero or more l's, followed by a lone 0.

b) This regular expression generates all strings consisting of zero or more l's, followed by one or more O's.

c) This set has only two elements, 111 and 001.

d) This set contains all strings in which the O's come in pairs.

e) This set consists of all strings in which every 1 is preceded by at least one 0, with the proviso that the

string ends in a 1 if it is not the empty string.

f) This gives us all strings of length at least 3 that end 00.

Section 13.4 Language Recognition 475

3. In each case we try to view 0101 as fitting the regular expression description.

a) The strings described by this regular expression have at most three "blocks" of different digits-a 0, then

some l's, then some O's. Thus we cannot get the string 0101, which has four blocks.

b) The l's that might come between the first and second 0 in any string described by this regular expression

must come in pairs (because of the (11)*). Therefore we cannot get 0101. Alternatively, note that every

string described by this regular expression must have odd length.

c) We can get this string as 0(10) 1 11 .

d) We can get this string as 01 10(1), where the final 1 is one of the choices in (OU 1).

e) We can get this string as (01) 2 (11) 0 .

f} We cannot get this string, because every string with any l's at all described by this regular expression must

end with 10 or 11.

g) We cannot get this string, because every string described by this regular expression must end with 11.

h) We can get this string as 01(01)1°, where the second 01 is one of the choices in (01U0).

5. a) We just need to take a union: 0 U 11 U 010.

b} More simply put, this is the set of strings of five or more O's, so the regular expression is 000000* .

c) We can use (0 U 1) to represent any symbol and (00 U 01 U 10 U 11) to represent any string of even length.

We need one symbol followed by any string of even length, so we can take (0 U 1)(00 U 01U10 U 11)*.

d) The one 1 can be preceded and/or followed by any number of O's, so we have 0*10*.

e) This one is a little harder. In order to prevent 000 from appearing, we must have every group of one or

two O's followed by a 1 (if we note that the entire string ends with a 1 as well). Thus we can break our string
down into groups of 1, 01, or 001, and we get (1 U 01 U 001)* as our regular expression.

7. a) We can translate "one or more O's" into 00*. Therefore the answer is 00*1.

b) We can translate "two or more symbols" into (0U1)(0U1)(0U1)*. Therefore the answer is (0 U 1)(0 U

1)(0 u 1)*0000*.

c} A little thought tells us that we want all strings in which all the O's come before all the l's or all the l's

come before all the O's. Thus the answer is O* 1 * U 1 *O*.

d) The string of l's can be represented by 11(111)*; the string of O's, by (00)*. Thus the answer is

11(111)* (00)*.

9. a) The simplest solution here is to have just the start state s0 , nonfinal, with no transitions.

b) The simplest solution here is to have just the start state s0 , final, with no transitions.

c) The simplest solution here is to have just two states-the nonfinal start state s0 (since we do not want to

accept the empty string) and a final state s 1 -and just the one transition from s0 to s1 on input a.

11. We can prove this by induction on the length of a regular expression for A. If this expression has length 1, then

it is either 0 or >. or x (where x is some symbol in the alphabet). In each case A is its own reversal, so there is

nothing to prove. There are three inductive steps. If the regular expression for A is BC, then A = BC, where

B is the set generated by B and C is the set generated by C. By the inductive hypothesis, we know that there
are regular expressions B' and C' that generate BR and CR, respectively. Now AR= (BC)R = (CR)(BR).

Therefore a regular expression for AR is C'B'. The case of union is handled similarly. Let the regular

expression for A be BU C, with B, C, B', and C' as before. Then a regular expression for AR is B' UC',

since clearly (BU C)R = (BR) U (CR). Finally, if the regular expression for A is B*, then, with the same
notation as before, it is easy to see that (B')* is a regular expression for AR.

13. a) We can build machines to recognize O* and 1 * as shown in the second row of Figure 3. Next we need

to put these together to make a machine that recognizes O* 1 * . We place the first machine on the left and

476 Chapter 13 Modeling Computation

the second machine on the right. We make each final state in the first machine nonfinal (except for the start
state, since >. E 0*1 *), but leave the final states in the second machine final. Next we copy each transition
to a state that was formerly final in the first machine into a transition (on the same input) to the start state

of the second machine. Lastly, since ,\ E O* , we add the transition from the start state to the state to which

there is a transition from the start state of the machine for 1 * . The result is as shown. (In all parts of this

exercise we have not put names on the states in our state diagrams.)

b) This machine is quite messy. The upper portion is for 0, and the lower portion is for 11. They are

combined to give a machine for 0 U 11. Finally, to incorporate the Kleene star, we added a new start state

(on the far left), and adjusted the transitions according to the procedure shown in Figure 2.

c) This is similar to the other parts. We grouped the expression as 01 * U (00*)1. The answer is as shown.

~~
Oo-O~© 01-0 ~ o U1
~ 0

15. We choose as the nonterminal symbols corresponding to states s0 , s 1 , and s2 the symbols S, A, and B,
respectively. Thus S is our start symbol. The terminal symbols are of course 0 and 1. We construct the rules

for our grammars by following the procedure described in the proof of the second half of Theorem 2: putting

in rules of the form X ____, aY for each transition from the state corresponding to X to the state corresponding

to Y, on input a, and putting in a rule of the form X ____, a for a transition from the state corresponding to

X to the final state, on input a. Specifically, since there is a transition from s0 to s 1 on input 0, we include

the rule S ____, OA. Similarly, the other transitions give us the rules S ____, IB, A ____, OB, A ____, IB, B ____, OB,

and B ____, lB. Also, the transition to the final state from S on input 0 gives rise to the rule S ____, 0. Thus

our grammar contains these seven rules.

17. This is similar to Exercise 15-see the discussion there for the approach. We let C correspond to state s3 .

The set of rules contains S ____, OC, S ____, IA, A ____, IA, A ____, OC, B ____, OB, B ____, IB, C ____, OC, and C ____, IB
(for the transitions from a state to another state on a given input), as well as S ____, 1, A ____, 1, B ____, 0, B ____, 1,

and C ____, 1 (for the transitions to the final states that can end the computation).

Section 13.4 Language Recognition 477

19. This is clear, since the operation of the machine is exactly mimicked by the grammar. If the current string in

the derivation in the grammar is v1 V2 ... VkAs, then the machine has seen input v 1 v2 ... Vk and is currently

in state s. If the current string in the derivation in the grammar is V1 v2 ... Vk, then the machine has seen

input v1 v2 ... Vk and is currently in some final state. Hence the machine accepts precisely those strings that
the grammar generates. (The empty string does not fit this discussion, but it is handled separately-and
correctly-since we take S --+ >. as a production if and only if we are supposed to.)

21. First suppose that the language recognized by M is infinite. Then the length of the words recognized by M

must be unbounded, since there are only a finite number of symbols. Thus l(x) is greater than the finite

number ISi for some word x E L(M).

Conversely, let x be such a word, and let so , Si1 , Si2 , ••• , s,n be the sequence of states that the machine

goes through on input x, where n = l(x) and s,n is a final state. By the pigeonhole principle, some state

occurs twice in this sequence, i.e., there is a loop from this state back to itself during the computation. Let y

be the substring of x that causes the loop, so that x = uyv. Then for every nonnegative integer k, the string

uykv is accepted by the machine M (i.e., is in L(M)), since the computation is the same as the computation
on input x, except that the loop is traversed k times. Thus L(M) is infinite.

23. We apply the pumping lemma in a proof by contradiction. Suppose that this set were regular. Clearly it

contains arbitrarily long strings. Thus the pumping lemma tells us that for some strings u, v -I- >., and w,

the string uviw is in our set for every i. Now if v contains both O's and l's, then uv2w cannot be in the set,

since it would have a 0 following a 1, which no string in our set has. On the other hand, if v contains only

O's (or only l's), then for large enough i, it is clear that uv'w has more than (or less than) twice as many

O's as l's, again contradicting the definition of our set. Thus the set cannot be regular.

25. We will give a proof by contradiction, using the pumping lemma. Following the hint, let x be the palindrome
0N10N, for some fixed N > ISi, where S is the set of states in a machine that recognizes palindromes. By

the lemma, we can write x = uvw, with l(uv)::::; ISi and l(v) ::'.:: 1, so that for all i, uv'w is a palindrome.

Now since 0N10N = uvw and l(uv)::::; ISi < N, it must be the case that vis a string consisting solely of O's,

with the 1 lying in w. Then uv2w cannot be a palindrome, since it has more O's before its sole 1 than it has

O's following the 1.

27. It helps to think of L/x in words-it is the set of "ends" of strings in L that start with the string x; in other

words, it is the set of strings obtained from strings in L by stripping away an initial piece x. To show that

11 and 10 are distinguishable, we need to find a string z such that llz E L and lOz tt L or vice versa. A

little thought and trial and error shows us that z = 1 works: 111 tt L but 101 E L. To see that 1 and 11

are indistinguishable, note that the only way for lz to be in L is for z to end with 01, and that is also the

only way for l lz to be in L.

29. By Exercise 28, if two strings are distinguishable, then they drive the machine from the start state to different

states. Therefore, if x1, x2, ... , Xn are all distinguishable, the states f(so, x1), f(so, x2), ... , f(so, xn) are
all different, so the the machine has at least n states.

31. We claim that any two distinct strings of the same length are distinguishable with respect to the language P
of all palindromes. Indeed, if x and y are distinct strings of length n, let z = xR (the reverse of string x).

Then xz E P but yz tt P. Note that there are 2n different strings of length n. By Exercise 29, this tells

us that any deterministic finite-state automaton for recognizing palindromes must have at least 2n states.

Because n is arbitrary (we want our machine to recognize all palindromes), this tells us that no finite-state
machine can recognize P.

478 Chapter 13 Modeling Computation

SECTION 13.5 Turing Machines
In this final section of the textbook, we have studied a machine that has all the computing capabilities possible

(if one believes the Church-Turing thesis). Most of these exercises are really programming assignments, and

the programming language you are stuck with is not a nice, high-level, structured language like Java or C, nor

even a nice assembly language, but something much messier and less efficient. One point of the exercises is to

convince you that even in this horrible setting you can, with enough time and patience, instruct the computer

the Turing machine-to do whatever you wish computationally. Keep in mind that in many senses, a Turing

machine is just as powerful as any computer running programs written in any language. One reason for talking

about Turing machines at all, rather than just using high-level languages, is that their simplicity makes it

feasible to prove some very interesting things about them (and therefore about computers in general). For

example, one can prove that computers cannot solve the halting problem (see also Section 3.1), and one can

prove that a large class of problems have efficient algorithmic solutions if and only if certain very specific

problems, such as a decision version of the traveling salesman problem, do (the NP-complete problems-see

also Section 3.3). This is part of what makes Turing machines so important in theoretical computer science,

and time spent becoming acquainted with them will not go unrewarded as you progress in this field.

1. We will indicate the configuration of the Turing machine using a notation such as O[s2]1Bl. This string of

symbols means that the tape is blank except for a portion which reads OlBl from left to right; that the
machine is currently in state s2; and that the tape head is reading the left 1 (the currently scanned symbol
will always be the one following the bracketed state information).

a) The initial configuration is [s0]0011. Because of the five-tuple (s0 , 0, s1, 1, R) and the fact that the machine

is in state s0 and the tape head is looking at a 0, the machine changes the 0 to a 1 (i.e., writes a 1 in that

square), moves to the right, and enters state s1. Therefore the configuration at the end of one step of the

computation is l[s1]011. Next the transition given by the five-tuple (s1,0,s2, 1,L) occurs, and we reach the

configuration [s2]1111. There are no five-tuples starting with s2 , so the machine halts at this point. The

nonblank portion of the tape contains 1111 .

b) The initial configuration is [s0]101. Because of the five-tuple (s0 , l,s1,0,R) and the fact that the machine

is in state s0 and the tape head is looking at a 1, the machine changes the 1 to a 0, moves to the right, and

enters state s1. Therefore the configuration at the end of one step of the computation is O[s1]01. At this time

transition (s1,0,s2,1,L) kicks in, resulting in configuration [s2]011, and the machine halts, with 011 on its

tape.

c) We seem to have the idea from the first two parts, so let us just list the configurations here, using the notation

"----+'' to show the progression from one to the next. [so]llBOl ----+ O[s1]1B01 ----+ OO[s1]B01 ----+ O[s2]0001.

Therefore the final output is 00001.

d) [s0]B----+ O[s1]B----+ [s2]00. So the final tape reads 00.

3. Note that all motion is from left to right.

a) The machine starts in state s0 and sees the first 1. Therefore using the second five-tuple, it replaces the

1 by a 0, moves to the right, and enters state s1. Now it sees the second 1, so, using the fifth five-tuple, it

replaces the 1 by a 1 (i.e., leaves it unchanged), moves to the right, and enters state s0 . The third five-tuple

now tells it to leave the blank it sees alone, move to the right, and enter state s2 , which is a final (accepting)

state (because it is not the first state in any five-tuple). Since there are no five-tuples telling the machine what

to do in state s2 , it halts. Note that 01 is on the tape, and the input was accepted.

b) When in state s0 the machine skips over O's, ignoring them, until it comes to a 1. When (and if) this

happens, the machine changes this 1 to a 0 and enters state s1 . Note also that if the machine hits a blank

(B) while in state s0 or s1, then it enters the final (accepting) state s2 . Next note that s1 plays a role

similar to that played by so, causing the machine to skip over O's, but causing it to go back into state s0 if

and when it encounters a 1. In state s1 , however, the machine does not change the 1 it sees to a 0. Thus

Section 13.5 Turing Machines 479

the machine will alternate between states s0 and s1 as it encounters l's in the input string, changing half
of these l's to O's. To summarize, if the machine is given a bit string as input, it scans it from left to right,

changing every other occurrence of a 1, if any, starting with the first, to a 0, and otherwise leaving the string

unchanged; it halts (and accepts) when it comes to the end of the string.

5. a) The machine starts in state s0 and sees the first 1. Therefore using the first five-tuple, it replaces the 1

by a 0, moves to the right, and enters state s1. Now it sees the second 1, so, using the second five-tuple, it

replaces the 1 by a 1 (i.e., leaves it unchanged), moves to the right, and stays in state s1. Since there are no

five-tuples telling the machine what to do in state s1 when reading a blank, it halts. Note that 01 is on the

tape, and the input was not accepted, because s1 is not a final state; in fact, there are no final states (states
that begin no 5-tuples).

b) This is essentially the same as part (a). The first 1 (if any) is changed to a 0 and the others are left alone.
The input is not accepted.

7. The machine needs to search for the first 0 and when (and if) it finds it, replace it with a 1. So let's have the

machine stay in its initial state (so) as long as it reads l's, constantly moving to the right. If it ever reads a
0 it will enter state s1 while changing the 0 to a 1. No further action is required. Thus we can get by with

just the following two five-tuples: (s0 , 0, s1, 1, R) and (so, 1, s0 , 1, R). Note that if the input string consists of

just l's, then the machine eventually sees the terminating blank and halts.

9. The machine should scan the tape, leaving it alone until it has encountered the first 1. At that point, it needs

to enter a phase in which it changes all the l's to O's, until it reaches the end of the input. So we'll have

tuples (so, 0, so, 0, R) and (so, 1, si, 1, R) to complete the first phase, and then have tuples (s1, 0, s1, 0, R) and

(s1, 1, s1, 0, R) to complete the second phase. When the machine encounters the end of the input (a blank on

the tape) it halts, since there are no transitions given with a blank as the scanned symbol.

11. We can have the machine scan the input tape until it reaches the first blank, "remembering" what the last

symbol was that it read. Let us use state s0 to represent that last symbol's being a 1, and s1 to represent its

being a 0. It doesn't matter what gets written, so we'll just leave the tape unchanged as we move from left to

right. Thus our first few five-tuples are (s0 , 0, s1, 0, R), (s0 , 1, s0 , 1, R), (s1, 0, s1, 0, R), (s1, 1. s0 , 1, R). Now

suppose the machine encounters the end of the input, namely the blank at the end of the input string. If it is

in state so, then the last symbol read was not a 0, so we want to not accept the string. If it is in state s1 ,

then the last symbol read was a 0, so we want to accept the string. Recall that the convention presented in

this section was that acceptance is indicated by halting in a final state, i.e., one with no transitions out of it.

So let's add the five-tuple (s1, B, s2 , B, R) for accepting when we should. To make sure we don't accept when

we shouldn't, we need do nothing else, because the machine will halt in the nonfinal state s0 in this case.

An alternative approach to this problem is to have the machine scan to the right until it reaches the end

of the tape, then back up, "look" at the last symbol, and take the appropriate action.

13. This is very similar to Exercise 11. We want the machine to "remember" whether it has seen an even number

of l's or not. We'll let s0 be the state representing that an even number of l's have been seen (which is

of course true at the start of the computation), and let s1 be the state representing that an odd number of

l's have been seen. So we put in the following tuples: (s0 ,0,s0 ,0,R), (s0 ,l,s1,l,R), (s1,0,s1,0,R), and

(s1, 1, so, 1, R). When the machine encounters the terminating blank, we want it to accept if it is in state s0 ,

so we add the tuple (s0 , B, s2 , B, R). Thus the machine will halt in final state s 2 if the input string has an

even number of O's, and it will halt in nonfinal state s1 otherwise.

480 Chapter 13 Modeling Computation

15. You need to play with this machine to get a feel for what is going on. After doing so, you will understand

that it operates as follows. If the input string is blank or starts with a 1, then the machine halts in state

s0 , which is not final, and therefore every such string is not accepted (which is a good thing, since it is not

in the set to be recognized). Otherwise the initial 0 is changed to an Al, and the machine skips past all the
intervening O's and l's until it either comes to the end of the input string or else comes to an M (which, as

we will see, has been written over the right-most remaining bit). At this point it backs up (moves left) one

square and is in state s2 . Since the acceptable strings must have a 1 at the right for each 0 at the left, there

had better be a 1 here if the string is acceptable. Therefore the only transition out of state s2 occurs when

this square contains a 1. If it does, then the machine replaces it with an !vl, and makes its way back to the
left. (If this square does not contain a 1, then the machine halts in the nonfinal state s2 , as appropriate.)

On its way back, it stays in state s3 as long as it sees l's, then stays in s4 as long as it sees O's. Eventually

either it encounters a 1 while in state s4 , at which point it (appropriately) halts without accepting (since

the string had a 0 to the right of a 1); or else it reaches the right-most M that had been written over a 0

near the beginning of the string. If it is in state s3 when this happens, then there are no more O's in the
string, so it had better be the case (if we want to accept this string) that there are no more l's either; this

is accomplished by the transitions (s3, l\1, s5, l\1, R) and (s5, l\1, s6 , M, R), and s6 is a final state. Otherwise,

the machine halts in nonfinal state s.5 . If it is in state s4 when this M is encountered, then we need to start

all over again, except that now the string will have had its left-most remaining 0 and its right-most remaining

1 replaced by]\f's. So the machine moves (staying in state S4) to the left-most remaining 0 and goes back
into state s0 to repeat the process.

17. This will be similar to the machine in Example 3, in that we will change the digits one at a time to a new

symbol M. We can't work from the outside in as we did there, however, so we'll replace all three digits from

left to right. Furthermore, we'll put a new symbol, E, at the left end of the input in order to tell more easily
when we have arrived back at the starting point. Here is our plan for the states and the transitions that will
accomplish our goal. State s9 is our (accepting) final state. States s0 and s1 will write an E to the left of the

initial input and return to the first input square, entering state s2 . (If, however, the tape is blank, then the

machine will accept immediately, and if the first symbol is not a 0, then it will reject immediately.) The five

tuples are (s0, B, sg, B, L), (s0, 0, s1, 0, L), and (s1, B, s2, E, R). State s2 will skip past any M's until it finds
the first 0, change it to an l\l, and enter state s3 . The transitions are (s2, J\.1, s2, M, R) and (s2, 0, s3, M, R) .
Similarly, state s3 will skip past any remaining O's and any M's until it finds the first 1, change it to

an l\f, and enter state s4 . The transitions are (s3, 0, s3, 0, R), (s3, A1, s3, M, R) and (s3, 1, s4, M, R). State

s4 will do the same for the first 2 (skipping past remaining l's and M's, and ending in state S5), with

transitions (s4, 1, s4, 1, R), (s4 , l\l, s4, !vl, R) and (s 4 , 2, s5, M, R). State s5 then will skip over any remaining
2's and (if there is any chance of accepting this string) encounter the terminating blank. The transitions are

(s5 ,2,s5 ,2,R) and (s 5 ,B,s6 ,B,L). Note that once this blank has been seen, we back up to the last symbol

before it and enter state s6 . There are now two possibilities. If the scanned square is an M, then we should

accept if and only if the entire string consists of]\;f's at this point. We will enter state s8 to check this,

with the transition (s6 , l\l, s8 , l\l, L) . Otherwise, there will be a 2 here, and we want to go back to the start
of the string to begin the cycle all over; we'll use state s7 to accomplish this, so we put in the five-tuple

(s 6 , 2, s7 , 2, L). In this latter case, the machine should skip over everything until it sees the marker E that we

put at the left end of the input, then move back to the initial input square, and start over in state s2 . The

transitions (s7,0,s7,0,L), (s7,l,s7,l,L), (s7,2,s7,2,L), (s7,Jl.;f,s7,M,L), and (s7,E,s2,E,R) accomplish

this. But if we entered state s8 , then we need to make sure that there is nothing but M's all the way back

to the starting point; we add the five-tuples (s 8 ,Jl.;1,s8 ,l\1,L) and (s8 ,E,s9 ,E,L), and we're finished.

19. Recall that functions are computed in a funny way using unary notation. The string representing n is a string

of n + 1 l's. Thus we want our machine to erase three of these l's (or all but one of them, if there are

Section 13.5 Turing Machines 481

fewer than four), and then halt. One way to accomplish this is as follows. If n :::: 3, then the five-tuples

(s0 ,l,s1,B,R), (s1,l,s2,B,R), (s2,l,s3,B,R), and (s3,l,s4,l,R) will do the trick (s4 is just a halting

state). To account for the possibilities that n < 3, we add transitions (s1 ,B,s4,l,R), (s2,B,s4,l,R), and

(s3, B, s4, 1, R). In each of these three cases, we needed to restore one 1 before halting (since the "answer"

was to be 0).

21. The machine here first needs to "decide" whether n 2 5. If it finds that n 2 5, then it needs to leave exactly
four l's on the tape (according to our rules for representing numbers in unary); otherwise it needs to leave

exactly one 1. We'll use states s0 through s6 for this task, with the following five-tuples, which erase the

tape as they move from left to right through the input: (s0 ,l,s1 ,B,R), (s1,l,s2,B,R), (s 1 ,B,s6 ,B,R),

(s2, 1, s3, B, R), (s2, B, s6 , B, R), (s3, 1, s4, B, R), (s3, B, s5, B, R), (s4, 1, s5, B, R), (s4, B, s5, B, R). At this
point, the machine is either in state s5 (and n 2 5), or in state s6 with a blank tape (and n < 5). To

finish in the latter case, we just write a 1 and halt: (s6 , B, s10 , 1, R). For the former case, we erase the rest

of the tape, write four l's, and halt: (s5, 1, s5, B, R), (ss, B, s7, 1, R), (s7, B, ss, 1, R), (ss, B, sg, 1, R), and

(sg, B, s10, 1, R).

23. We start with a string of n + 1 l's, and we want to end up with a string of 3n + 1 l's. Our idea will be to

replace the last 1 with a 0, then for each 1 to the left of the 0, write a pair of new l's to the right of the 0.

To keep track of which l's we have processed so far, we will change each left-side 1 to a 0 as we process it.

At the end, we will change all the O's back to l's. Basically our states will mean the following (''first'' means

"first encountered"): s0 , scan right for last 1 ; s1 , change the last 1 to 0; s2 , scan left to first 1; s3 , scan

right for end of input (having replaced the 1 where we started with a 0); s3 and s4 , write the two more l's;

s5 , scan left to first O; s6 , replace the remaining O's with l's; s7, halt.

The needed five-tuples are as follows: (s0 ,l,s0 ,l,R), (so,B,s 1 ,B,L), (s1,l,s2,0,L), (s2,0.s2,0,L),

(s2,l,s3,0,R), (s2,B,s5,B,R), (s3,0,s3,0,R), (s3,l,s3,l,R), (s3,B,s4,l,R), (s4,B,s5,l,L),

(ss,l,ss,l,L), (ss,O,s2,0,L), (s5,0,s5,l,R), (s5,l,s7,l,R), (s5,B,s7,B,R).

25. The idea here is to match off the l's in the two inputs (changing the l's to O's from the left, say, to keep

track), until one of them is exhausted. At that point, we need to erase the larger input entirely (as well as

the asterisk) and change the O's back to l's. Here is how we'll do it. In state s0 we skip over any O's until

we come to either a 1 or the *. If it's the *, then we know that the second input (n 2) is at least as large as

the first (n 1), so we enter a clean-up state s5 , which erases the asterisk and all the O's and l's to its right.

The five-tuples for this much are (so, 0, so, 0, R), (so,*, s5, B, R), (ss, 1, s5, B, R), and (s5, 0, s5, B, R). Once
this erasing is finished, we need to go over to the part of the tape where the first input was and change all the

O's back to l's; the following transitions accomplish this: (s5 ,B,s6 ,B,L), (s5,B,s5,B,L), (s5,0,s7,l,L),

and (s7,0,s7,l,L). Eventually the machine halts in state s7 when the blank preceding the original input is

encountered.

The other possibility is that the machine encounters a 1 while in state so. We want to change this 1 to
a 0, skip over any remaining l's as well as the asterisk, skip over any O's to the right of the asterisk (these

represent parts of n 2 that have already been matched off against equal parts of n 1), and then either find a 1

in n 2 (which we change to a 0) or else come to the blank at the end of the input. Here are the transitions:

(so, 1, s1, 0, R), (s1, 1, s1, 1, R), (s1, *, s2, *, R), (s2, 0, s2,0,R), (s2, 1, s3, 0, L), (s2, B, s4,B,L). At this point
we are either in state s3 , ready to go back for the next iteration, or in state s4 ready for some cleanup. In

the former case, we want to skip back over the nonblank symbols until we reach the start of the string, so

we add five-tuples (s3, *, s3, *, L), (s3, 0, s3, 0, L), (s3, 1, s3, 1, L), and (s3, B, so, B, R). In the latter case, we

know that the first string is longer than the second. Therefore we want to change the O's in the second input

string back to l's and then erase the asterisk and remnants of the first input string. Here are the transitions:

(s4,0,s4,l,L), (s4,*,Ss,B,L), (ss,O,ss,B,L), (ss,l,ss,B,L).

482 Chapter 13 Modeling Computation

27. The discussion in the preamble tells how to take the machines from Exercises 22 and 18 and create a new
machine. The only catch is that the tape head needs to be back at the leftmost 1. Suppose that Sm, where m

is the largest index, is the state in which the Turing machine for Exercise 22 halts after completing its work,

and suppose that we have designed that machine so that when the machine halts the tape head is reading the

leftmost 1 of the answer. Then we renumber each state in the machine for Exercise 18 by adding m to each
subscript, and take the union of the two sets of five-tuples.

29. If the answer is yes/no, then the problem is a decision problem.

a) No, the answer here is a number, not yes or no.

b) Yes, the answer is either yes or no.

c) Yes, the answer is either yes or no.

d) Yes, the answer is either yes or no.

31. This is a fairly hard problem, which can be solved by patiently trying various combinations. The following

five-tuples will do the trick: (s0, B, s1, 1, L), (so, 1, s1, 1, R), (s1, B, so, 1, R).

GUIDE TO REVIEW QUESTIONS FOR CHAPTER 13
1. a) See p. 849. b) Seep. 849.

2. a) See p. 850. b) { 03
n 1 I n 2: o }

c) The vocabulary is { S, 0, 1} ; the terminals are T = { 0, 1} ; the start symbol is S; and the productions are

S-+Sl and S-+O.

3. a) See p. 851.

c) Seep. 851.

e) Seep. 851.

4. a) See p. 851.

b) a grammar that contains a production like AB --+ C

d) a grammar that contains a production like Sa--+ Sbc

f) a grammar that contains a production like S--+ SS

b) See p. 851.

c) See Example 8 in Section 13. l.

5. a) See p. 854. b) See Example 14 in Section 13.l.

6. a) Seep. 851 (machines with output) and p. 867 (machines without output, called finite-state automata). See

also p. 863 for comments on other types of finite-state machines.

b) Have three states and only one input symbol, Q (quarter). The start state s0 has a transition to state s1

on input Q and outputs nothing; state s1 has a transition to state s2 on input Q and outputs nothing; state

s2 has a transition back to state s1 on input Q and outputs a drink.

7. 1*u1 *00

8. Have four states, with only s2 final. From the start state s0 , go to a graveyard state s1 on input 0, and go

to state s2 on input 1 . From both states s2 and S3, go to s2 on input 1 and to s3 on input 0.

9. a) See p. 866.

b) the set of all strings in which all the maximal blocks of consecutive l's (if any) have an even number of l's

10. a) See p. 867. b) See p. 868.

11. a) See p. 873. b) See Theorem 1 in Section 13.3.

12. a) See p. 879. b) Seep. 879.

